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ABSTRACT 

 

 In this thesis, we present implementation of point-based deep learning architectures 

that can be used for semantic segmentation of search and rescue environments. In recent years, 

semantic segmentation problem has been considered to interpret the scenes. The problem aims 

to segment a scene into semantic regions. For this reason, it is appropriate to determine walls, 

ramps, and terrain surfaces in a search and rescue environments. To achieve that we preferred 

to utilize point cloud data that is a set of points in 3D space. Besides, the points can have 

crucial features such as point normal and color information. In this way, the characteristic of a 

scene can be described in a proper representation. We used A-SCN, ELGS, Kd-Net, 

PointConv, SO-Net, and SpiderCNN architectures on the same scenes in training and testing. 

The ESOGU RAMPS dataset which includes scenes from a simulated environment was used 

in the experimental works. The test results show that the different architectures selected 

produce generally successful results on the same training and test scenes. 

 

Keywords: deep learning, semantic segmentation, search and rescue. 
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ÖZET 

 

 Bu tezde, arama ve kurtarma ortamlarının anlamsal bölümlenmesinde kullanılabilecek 

nokta tabanlı derin öğrenme mimarilerinin uygulamasını sunuyoruz. Son yıllarda sahneleri 

yorumlamak için anlamsal bölütleme problemi gündeme gelmiştir. Problem, bir sahneyi 

anlamsal bölgelere ayırmayı amaçlar. Bu nedenle arama kurtarma ortamlarında duvarların, 

rampaların ve yer yüzeylerinin belirlenmesi yapılabilir. Bunu başarmak için 3B uzayda bir dizi 

nokta olan nokta bulutu verilerini kullanmayı tercih ettik. Ayrıca noktalar, nokta normali ve 

renk bilgisi gibi çok önemli özelliklere sahip olabilir. Bu şekilde, bir sahnenin karakteristiği 

uygun bir temsilde tanımlanabilir. Eğitim ve testlerde aynı sahnelerde A-SCN, ELGS, Kd-Net, 

PointConv, SO-Net ve SpiderCNN mimarilerini kullandık. Deneysel çalışmalarda simüle 

edilmiş bir ortamdan sahneleri içeren ESOGU RAMPS veri seti kullanılmıştır. Test sonuçları, 

seçilen farklı mimarilerin aynı eğitim ve test sahnelerinde genel olarak başarılı sonuçlar 

verdiğini göstermektedir. 

  

 

Anahtar Kelimeler: derin öğrenme, anlamsal sınıflandırma, arama ve kurtarma. 
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1. INTRODUCTION 

  

In earlier research, point cloud data was commonly used for classification and part 

segmentation. It is, however, currently being employed in investigations involving the 

semantic segmentation of the domain. Robots may now separate and comprehend the parts and 

objects in their surroundings thanks to semantic segmentation. Robots can now be used for a 

variety of tasks, including guiding people through museums, discovering new planets like 

Mars, assisting disabled, elderly, or ill people, and cooperating with rescue crews in post-

disaster search and rescue missions, thanks to semantic segmentation of the environment and 

semantic classification of robot locations [1]. The importance of scene comprehension is 

essential to the search and rescue robots' philosophy. 

 

With today’s technology many applications need the scene understanding. Driverless 

cars, human-machine interaction, picture search engines, and virtual reality are just a few 

examples [2].  These methods have kept up with the increasing data redundancy with the 

advancement of technology in hardware terms. Increasing capacity of processors (CPU and 

GPU), suitable sizes and ease of access have increased and accelerated the studies in this 

regard. Methods such as segmentation and classification are basically optimization methods. 

In line with the opportunities provided by the graphics cards, the orientation of the 

optimization methods to generic algorithms has become easier. In this sense, operations such 

as image processing, sound processing or problem solving, which are more suitable for the 

living nature, can be used more flexibly due to the success of generic algorithms in this regard. 

Therefore, as the number of architectures and datasets produced increased, it was possible to 

test many architectures on different datasets and compare the results. 

 

Nature was used as a guide in the field of machine learning. Many different neural 

network methods are used in machine learning and therefore in the field of deep learning, and 

these neural network methods are inspired by the neuron structures of living brains. In deep 

learning, the convolutional neural network (CNN or ConvNet) is a deep neural network 

applied to analyze and classify visual images. Besides these improvement, deep learning 

methods has big jump on this development. Convolutional Neural Networks (CNNs), by far 
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the leading method and surpassing other types, are a great margin in terms of accuracy and 

efficiency. ConvNets for 2D imagery has great success. But using deep learning in 3D data is 

difficult. 3D convolutional networks (3D ConvNets) are used to represent 3D data using voxel 

representation. However, owing to the lack of most 3D data, most computations are useless. 

Aside from that, pure 3D ConvNets have issues like significant resolution degradation and 

massively growing computing costs. Moreover, the fast expansions of sensing technology, as 

well as the large supply and demand from technologies such as autonomous vehicles, 

necessitate effective 3D computations [3].  

 

On the other hand, the process of digitizing such visual data is difficult due to the high 

complexity of the analog structure. The method used to digitize such analog data is to express 

the data as a point cloud. The point cloud structure can be obtained with various RGB-D 

cameras, 3D laser range finders and LiDARs and real world objects can be digitized in terms 

of the position and features they occupy in space. These obtained point features, which 

constitute the input for the architectures we use in our experiments, are point cloud based. 

There are also many data storage types in addition to the point cloud. As an example of these, 

depth images, meshes, and volumetric grids can be given [4]. Using point cloud data is a more 

convenient way to visualize data and detect errors. 

 

The main motivation of this paper is semantic segmentation of scenes that are placed in 

the ESOGU RAMPS [5] dataset with different point-based deep learning architectures. 

Selected architectures were modified for the ESOGU RAMPS dataset, pre-trained, trained, 

tested and visualized. The architectures used on the ESOGU RAMPS dataset during these 

processes can be listed as follows. A-SCN [6], ELGS [7], Kd-Net [8], PointConv [9], SO-Net 

[3] and SpiderCNN [10]. The architectures were evaluated with recall, precision, Intersection 

over Union (IoU), Mean Intersection over Union (MIoU), and accuracy metrics. 
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2. METHODOLOGY 

 

In this section, we briefly mentioned on the point-based deep learning architectures we 

run with ESOGU RAMPS. These architectures are A-SCN, ELGS, Kd-Net, PointConv, SO-

Net and SpiderCNN.  

 

2.1 A-SCN 

 

  A-SCN (Attentional ShapeContextNet) uses shape context and inner distances to 

obtain shape matching. In other words, it classifies points hierarchically according to shape 

context structure to fit a model on point cloud data. SCN (ShapeContextNet) is an architecture 

that uses the shape context structure. Shape context structure has been used in many fields 

before, but it has not been used in the field of deep learning. In this structure, the input data is 

equipped using different numbers of disks. And these discs cover neighboring points, forming 

partitions of different sizes inside. These partitions create a priority between points [6]. This 

priority is provided SCN disks as shown in Figure 1. 

Figure 1. An illustration of application of a shape context structure on an airplane sample [6] 

 

Although the Shape Context structure is a simple concept, it contains many different 

parameters. In this sense, this useful structure modifies the self-attention structure to itself to 

eliminate such situations. The Self-Attention structure produces very successful results in 

current deep learning technologies. The Self-Attention structure performs calculations for the 

input data containing a set of key-value structures with each other and provides logical results 



 4 

by multiplying the appropriate parameters for the set given as input and the output with 

appropriate vectors [11].  

 

2.2 ELGS 

 

The ELGS model creates a contextual representation for each point in the point cloud, 

considering neighboring points, to enrich semantic meaning of the points. 

 

Figure 2. Three coupled components of the ELGS model [7] 

 

Graph pointnet module (GPM) and graph attention block (GAB) are used to get 

characteristic representation of each point, due to the enriched semantic representations that 

result. Multiple GPMs can be used for output representation. As a result of this process, the 

point cloud structure is used to generate label information for points. In Figure 2, the proposed 

model for semantic segmentation that consists of three subcomponents is shown. The point 

strengthening aims to enrich not only the points but also the semantic representation of the 

respective point. The feature representation learns each point's feature representation using a 

decoder-encoder architecture with sideways connections. GPM generates and updates each 

point acting via a GAB module. Lastly, for the prediction section, channel and spatial attention 

are used for the final semantic label estimation for each point. This model ignores the general 

relationship in favor of focusing on point local relationships. Unlike so many other designs 

and models, the geometric context information within neighboring points receives greater 
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attention. With the help of the graph pointnet module, context representation may reveal 

structural information in more depth (GPM). 

 

2.3 Kd-Net 

 

 Kd-Network executes transformations and distributes transformation factors based on 

the subdivisions of the point clouds pushed onto them by Kd-trees. Kd-Net avoids weak 

scaling behavior by not operating on uniform 2D or 3D grids in any way. An example of Kd-

tree structure created for 8 points on the left is shown in Figure 3. A classification structure 

associated with this Kd-tree is seen on the right. 

 

Figure 3. Kd-tree logic [8] 

 

A Kd-tree structure splits the collection of points into two equal-sized subgroups and 

chooses the axis with the greatest gap between the two outermost points in the data cloud, 

applying it periodically in a top-down manner. As a consequence, Kd-tree with point numbers 

in point cloud N, N-1 non-leaf nodes is generated. The levels are another feature of a tree 

node. For tree leaves with a 3D point cloud, Levels equals Depth D. N = 2D in this case. 

 

2.4 PointConv 

 

 3D point clouds are often disorganized and unordered geometric data structures, and 

convolutional neural networks are difficult to use directly. Therefore, a deep convolutional 

network method called PointConv was created. PointConv is a basic approach to 3D 
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convolutional neural networks. PointConv is inspired by the Monte Carlo approach in 3D 

convolution. It uses MLP (multilayer perceptron) to approximate a weighting functions for the 

convolutional filter. MLP is a branch of feed forward neural network [12]. 3D point clouds are 

transformed into 2D images or 3D volumetric grids in the majority of 3D convolutional neural 

network research. Local Regions are created in previous architectures. PointConv creates a 

matrix for Local Regions. PointConv efficiently analyzes and calculates weight functions and 

creates a convolution where density is re-weighted. As you see in Figure 4, PointConv offers 

an efficient approach to memory. 

Figure 4. Memory efficient on a local region with k points. [9] 

 

2.5 SO-Net 

 

SO-Net is a deep learning architecture that can be used for part segmentation and 

classification using CNN (Convolutional Neural Networks) with self-organizing map kernels. 

SO-Net architecture as an artificial neural network (ANN), self- organizing map (SOM) or 

self-organizing feature map (SOFM), can be explain in two modes training and mapping. At  

Figure 5. So-Net, distribution of SOM nodes on the object [3] 
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training process, SO-Net builds SOM nodes using input samples (vector quantization), where 

these nodes are visible part of SOM. Before training, SOM nodes set on to low-dimensional 

space (typically two-dimensional). On these finite regions where the object is located, nodes 

arrange in a regular hexagonal or rectangular grid. All nodes have a weight vector and during 

training process weight vectors are moved toward the input data. In a sense, SOM nodes are 

distributed according to training result on input data. An example for SOM distribution is 

visualized in Figure 5. SO-Net input sets must go through preprocessing. SOM nodes created 

in the preprocess will be used in the SO-Net training process. 

  

2.6 SpiderCNN  

 

 Deep neural networks are generally designed according to the human brain and have 

achieved success in some areas. However, it is difficult to achieve success for irregular 

structured areas such as 3D point clouds. A point cloud is an irregular geometric data 

structure. Since point clouds are scattered in an irregular manner, it prevents direct use of 

convolutional neural networks.  

 

Point clouds can be transformed into 3D voxels and this problem can be overcome by 

3D convolution. That's why SpiderCNN has been developed. SpiderCNN is a new 

convolutional architecture. CNN (Convolutional neural networks) is a sub-branch of deep 

learning. CNN is mostly used in the analysis of visual information. It is mostly used in picture 

and video descriptions and can examine the input image and distinguish the objects in the 

image. 

 

 For example, when looking at a scene, it can be classified if it has definable features 

such as Inclined ramp, Wall, Flat ramp, Terrain. Nowadays convolution in conventional CNN 

is basically an integral formula obtained by discretization between F, which is a picture 

function on regular grids and a filter matrix. SpiderConv has taken 𝑔𝑤,  

which is a special family of filters [10].  
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2.7 Tools 

  

 Tools and programs that used in this project: 

 

 

 

 

 

 

3. EXPERIMENTS 

 

3.1 Experimental Setup 

 

3.1.1 The ESOGU RAMPS dataset 

 

The ESOGU RAMPS dataset was created in the Gazebo [13] simulation environment, 

which is given in Figure 6(a). A Pioneer 3-AT mobile robot with an ASUS Xtion Pro RGB-D 

camera was launched in that environment. To control the robot and capture the scenes Robot 

Operating System (ROS) framework [14] was utilized. The robot takes 681 different scenes 

while navigating through the environment. In these scenes, points belong to Inclined Ramp, 

Wall, Flat Ramp, and Terrain semantic classes as shown in Figure 6(b).    

 

         (a) Simulation environment                                            (b) Semantic classes    

Figure 6. ESOGU RAMPS environment [15] 

• CUDA 

• Linux (Ubuntu) 

• Python libraries (Numpy, Scipy, 

Panda, etc.) and tools. 

• Anaconda 

 

• Tensorflow and PyTorch 

frameworks 

• Cloud Compare 

• Visual Studio Code ,Sublime Text 

• NVIDIA GTX 1070 Ti (GPU) 
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ESOGU RAMPS dataset consist of 681 scenes, and they represent a very large point 

cloud for an architecture. In the past, PointNet [16] blocking structure was often used in such 

large scene data. According to this structure, scene parts are divided at certain intervals in each 

scene. The blocks formed as a result of the splits are sent to the part segmentation and 

semantic segmentation methods in these ways. While creating the scene part, we created the 

blocks with one square meter areas and did not include the scenes with less than 100 points in 

the point cloud into the training and testing processes. Scene parts divided into blocks were 

sent after preprocessing required by the relevant architectures or by modifying their formats. 

In this sense, the architectures were trained for train testing and visualization. 

 

3.1.2 Experimental Process and Parameters 

   

Due to the use of many different libraries within the selected architectures, we 

implemented this work on the Ubuntu Operating System. Since the PyTorch and TensorFlow 

libraries working on the deep learning side work on the GPU, the necessary steps have been 

taken to make the drivers of the GPUs compatible with the relevant CUDA version.  

 

 First, the architectures were tested with their original datasets with the aim of checking 

whether they properly work. These datasets are Shapenet [17] and S3DIS [18] datasets. 

Shapenet dataset is prepared for part segmentation. Therefore, there are object structures, not 

scene structures. 16 different objects are used in the selected architectures. In the S3DIS 

dataset, there are 5 different large indoor areas, these areas are in 3 different buildings. These 

areas represent a total field of six thousand twenty 𝑚2. Within these data clouds, there are 12 

different semantic elements [5]. The Stanford Large-Scale 3D Indoor Spaces (S3DIS) 

collection is made up of 6 large indoor 3D point clouds. The interior scans span a total field of 

six thousand twenty 𝑚2 and include a total of 215 million points. The data has been 

semantically divided into 272 rooms and tagged with 12 semantic components as well as a 

clutter label. Indoor semantic segmentation is usually done with S3DIS. 
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We focused on the ESOGU RAMPS dataset, which is our main goal, with the 

architectures that we achieved positive results with their own datasets. After the import of all 

the data, the relevant parts of the data that should be separated for the train and test phases. 

This process occurs as a result of reading the "test_scene_list.txt" file, which contains the 

names of the scenes to be used for testing, and separating the scenes corresponding to the 

scene names it contains from all data.  

 

While obtaining the test results, the estimated label values are recorded for the 

respective blocks. These prediction values can be used to visualize relevant scenes. However, 

as we separate the scenes into blocks before sending the dataset to the architectures, the blocks 

must be put together so that the tested prediction values make a meaningful visual. While the 

blocks are being put together, we can shift each block to its previous places by using the 

reverse operation by recording the translation amounts in the operation where the blocks are 

separated. For each predicted value obtained, a different RGB value can be assigned for each 

label at the stage where the labels are saved. Together with these predictions, we sent the 

prediction scenes we obtained to the Cloud Compare [19] application. Points on related 

objects, visualized by the colors of different objects, can be read as the estimation error of the 

architectures. 

  

3.2 Experimental Results 

 

 First of all, all architectures were trained with the same data and tested with the same 

dataset. In this case, comparing the results with each other is not a problem, and it prepares a 

suitable basis for comparison. In order to implement the selected architectures, the existence 

of scripts was investigated, and it was confirmed that these scripts were written by the authors 

of the paper. In addition, the feasibility of these architectures was determined, and the system 

requirements were checked. Selections were made in line with what was explained. 

 

100 of the 681 scenes in the dataset were randomly determined and reserved for 

testing. These determined scenes were not included in the training process, however 

determined scenes were tested with trained models that were operated with scenes reserved for 
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training only. Recall (1), Precision (2), Intersection over Union (IoU) (3), mean Intersection 

over Union (mIoU) (4) and Accuracy (5) metric were considered. The metric and visual 

results are given in Table 1 and Figure 7, respectively.  

 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
    

 𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁
     

  𝑚𝐼𝑜𝑈 =  
∑ 𝐼𝑜𝑈𝑖

𝑛
𝑖=1

𝑛
    

 𝐴𝑐𝑐 =  
∑ 𝑇𝑃𝑖

𝑛
𝑖=1

∑ (𝑇𝑃𝑖 +  𝐹𝑃𝑖)
𝑛
𝑖=1

   

 

The successful prediction of the positive class by the architectural models is called 

True positive. The successful prediction of the non-positive class of the architectural models is 

called True negative. A false positive is that the architectural models cannot predict the 

positive class successfully. 

 

 Finally, the false negative is that the architectural models cannot successfully predict 

the non-positive class. Accuracy is the rate of number of corrects to entire predictions. 

Precision is the rate of positive identification onto actual correct, recall is the rate of actual 

positives onto identified corrects. 

 

 

 

 Inclined Ramp Wall Flat Ramp Terrain Mean 
 P R IoU P R Iou P R Iou P R IoU IoU Acc 

A-SCN 74.4 38.4 33.9 100.0 59.2 59.2 49.2 98.2 48.8 92.6 99.9 92.6 75.9 58.6 

ELGS 97.3 97.1 94.6 99.9 99.8 99.7 97.6 98.1 95.8 99.5 99.4 98.9 98.8 97.3 

Kd-Net X X X X X X X X X X X X X X 

PointConv 99.6 99.5 99.2 99.9 99.9 99.8 99.6 99.6 99.3 99.8 99.9 99.8 99.5 99.8 

SO-NET 94.6 96.7 91.7 99.8 99.7 99.5 98.9 95.2 94.2 98.5 99.3 97.9 98.1 95.8 

SpiderCNN 96.6 91.3 88.5 98.8 99.7 98.5 72.4 74.6 58.1 86.1 86.6 76.0 80.3 88.9 

(1) 

(2) 

(3) 

(4) 

(5) 

Table 1. Metric results 
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3.2.1 A-SCN 

 

The shape context structure contains parameters such as bins, r, 𝜑, 𝜃. The number of 

bins can be found by multiplying these three variables. These variables and disk structure can 
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Figure 7. Visual results 
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be found in Figure 8. Where r represents the radial distance of the bin structures, 𝜑 represents 

the bin number on polar coordinates, and 𝜃 represents the azimuthal angles of the bins. 

Basically, the process includes three main stages: selection, aggregation, and transformation. 

In selection, bins and their numbers are determined by the self-attention mechanism. In the 

aggregation process, the relationship of the formed bins with the points in the point cloud is 

created. In the transformation process, the aggregation outputs are processed, and the resulting 

features are sent to a kernel function. As a result, shape context blocks are created. Semantic 

segmentation application has been made with A-SCN is S3DIS data set and the results are 

presented in the paper as obtained.  

Figure 8. Disk structure of ShapeNetContext [6] 

 

During the application of the A-SCN method to the ESOGU RAMPS data set, the 

blocked data set was sent to the A-SCN architecture. 35 epochs were performed in the train 

process. The epoch that produced the best result was sent to the test process, and the test 

process was concluded with the evaluation technique applied to other architectures. 

Considering the visualization and test results, it has been shown that this architecture does not 

produce meaningful results with the ESOGU RAMPS dataset. When the results were obtained 

in this way, the train and test processes were repeated, but the results did not change. This 

situation can be attributed to the fact that the ESOGU RAMPS data set basically consists of 

two-dimensional planes. The 3-dimensional radial bins clusters created in the system can find 

themselves on only one plane. Therefore, as mentioned above, bins created in the selection 

phase cannot benefit sufficiently in the 𝜃 and 𝜑 features. The self-attention process is 
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negatively affected by this and cannot produce meaningful results. It was observed that the 

Wall class was strongly incorrectly predicted, and this was only seen near the ramps as shown 

in the Figure 10. Here, we can say that the system searches for different radial extensions and 

therefore tends to ramp classes. 

 

3.2.2 ELGS 

 

ELGS is a model for point cloud semantic segmentation. The ELGS model constructs a 

contextual representation for each point by considering its neighbors to augment its semantic 

meaning using a new gated fusion method. A new graphic point network module (GPM) based 

on a graphic attention block (GAB) is used to create and feature highlighting of each point in 

the local structure. In this way, the layer depth may be raised in this way, and increasingly 

complicated structures can be segmented. Finally, the channel-wise and spatial-wise attention 

methods used to create the semantic label for each point. 

 

After the ELGS model obtained successful results in the S3DIS data, it was transferred 

to work with the ESOGU RAMPS dataset to perform train and test operations. Since the 

ELGS model has a semantic segmentation structure, it was quickly adapted to the operations 

expected to be done with the ESOGU RAMPS data, and the data parameters of the ELGS 

model were changed accordingly. As a result of these processes, a great accuracy rate has been 

achieved, as can be seen in the visualized outputs. This is mostly due to the usage of the GPM 

module, as well as the fact that the ELGS modes prediction layer integrates global structure 

information between points, which improves representations. However, errors were 

encountered in some intersection areas where there are transitions between classes. However, 

errors were encountered in some intersection areas where there are transitions between classes. 

The solution to this is to find critical shape differences and detect edges more accurately. 

 

3.2.3 Kd-Net 

 

Many problems were encountered when trying to work with ESOGU RAMPS data in 

Kd-net. The basis of these problems was the size of the point cloud which is different from the 
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original referred point cloud size. In addition to the many train files in the architecture, it is not 

clearly specified which train is working with on GitHub. Thereupon, it was decided to use 

‘train_MG2.py' script, which includes skip connections in affine transformation used in 

segmentation. Since each block in ESOGU RAMPS data consists of 4096 points, the script 

content has been adapted to this mechanism. By adding a new encoding and decoding layer to 

the 'kdnet.py' script where the main operations of the architecture are done. Data size problem 

was tried to be avoided. Although the point set and class label information can be accessed 

correctly in the train file and the cut-dim required to create the kd-tree can be set, the predicted 

choice, required for the target to be created to check and compare the data could not be 

produced in the expected size. As a result of this problem, the article of architecture was re-

examined, and solutions were sought. Although there is part segmentation information in the 

Kd-net article, it has been observed that this architecture can only make classification and 

work with determined data size.  

 

3.2.4 PointConv 

 

 Since we did not have the Scannet dataset, we could not experiment on it. After 

adapting the ESOGU RAMPS data to PointConv, the training started. The training was 

stopped at epoch 33. After doing the test, the results we got were quite successful. Experiment 

on ESOGU RAMPS shows that PointConv is successful in semantic segmentation 

benchmarks in 3D point clouds compared to other architectures. PointConv learns the position 

of the point clouds in their local region via the multi-layer Perceptron the weight of the 

convolution kernel for convolutional filters and reweights the learned weighted functions. In 

this way, it makes the scene more understandable. Finally, we visualized our test results. 

When we look at the images, we observed that the PointConv architecture has a 99.8% 

accuracy rate between the predictions and the Ground Truth. 

 

3.2.5 SO-Net 

 

 In SO-Net, the data is pre-processed before the training process. We performed this  
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preprocessing for the ESOGU RAMPS dataset. After this pre-processing, SOM points are 

created, and this feature is combined with the label and point coordinates and sent to the 

architecture as input. SOM nodes are created in size nxn, resulting in size reduction. In another 

sense, we can classify the three-dimensional point cloud within the framework of 2D features. 

These created SOM nodes must be permutation variants in order to be associated with point 

coordinates. Here n can be selected in the range of [5-11] and accordingly SOM nodes have a 

size between 25 and 121.  

Figure 9. SOM nodes [3] 

 

Nodes created after preprocessing affect the result and these nodes are updated and fit 

on the object during the training period. The fitting process of SOM nodes on the object can be 

observed in the Figure 9. Thus, SOM nodes created in the space occupied by the object 

produce efficient results using the k nearest neighbors(kNN) approach. After the pre-process, 

training and testing processes were applied. Since there is no semantic segmentation structure 

in SO-Net, the segment segmentation structure has been modified. There are some errors only 

at the points where different classes come into contact with each other. The reason for this 

situation can be shown as that after the sonnet has created the SOM nodes, these nodes 

perform their update with the kNN mechanism. With the visualization process, we prove our 

mistakes and success. 

 

3.2.6 SpiderCNN 

 

Shapenet model is used while SpiderCNN trains. There are surface normals in point 

clouds in Shapenet data. But there are no surface normals in ESOGU RAMPS data. For this 

reason, we have commented the surface normals in the ‘get_batch’ function in SpiderCNN 
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‘train.py.’ We defined our scene to the ‘seg.classes’ list. The 0,1,2,3 labels on the stage 

represent Inclined ramps, walls, flat ramps, and terrain. We stopped it when the SpiderCNN 

completed its 40th epoch. When we looked at the results, we observed that we could not 

achieve a very successful result for SpiderCNN. We can say that the parameters are important 

in Convolutional Filters. This can affect the poor results. When we look at the table, we see 

that SpiderCNN finds the wall without any problems. But we observed that SpiderCNN made 

errors in Flat Ramp and Terrain values. 

 

4. PROJECT PLAN 

 

• Work Package A – Identifying the Problem:  The definition of the problem and its 

solutions were discussed. 

• Work Package B – Literature Search: Similar studies were reviewed on semantic 

segmentation based on deep learning.  

• Work Package C – Applicability of Potential Solutions: Testing feasibility of 

various solution techniques on certain problem.  

• Work Package D – Providing the Programming Requirements: Setting up the 

coding environments, tools and packages. 

• Work Package E – Specifying the Technique for Data Receiving: Determining the 

steps that can be followed when loading data into architectures. 

• Work Package F – Training the Architectures: To obtain the same experiment 

accuracies with corresponded methods. 

• Work Package G – Manipulation the Indoor Oriented Dataset: with S3DIS 

dataset, we tried separating block process. 

• Work Package H – Observing Results of Customized Dataset: Observing the 

training results of the pre-processed dataset and comparing between each method. 

• Work Package I – Visualization of the Predicted and Ground Truth Scenes 

• Work Package J – Preparation of ESOGU RAMPS: Implementation of blocking on 

ESOGU RAMPS data. 

• Work Package K – Training architectures with ESOGU RAMPS 
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• Work Package L – Testing architectures with ESOGU RAMPS 

• Work Package M – Visualization of the Predicted and Ground Truth Scenes 

• Work Package N – Researching new deep learning architectures: Investigation of 

new deep learning architectures that can do segmental segmentation that can be 

suitable for ESOGU RAMPS data. 

• Work Package O - Training the architectures 

• Work Package P - Testing the architectures 

• Work Package R – Training new architectures with ESOGU RAMPS 

• Work Package S – Testing new architectures with ESOGU RAMPS 

• Work Package T – Visualization new architectures with ESOGU RAMPS 

 

 

Table 2. Resource assignments for work packages. 

Work Package Resource Duration (Days) 

A Berkin, Doğukan, Batuhan 20 

B Berkin, Doğukan, Batuhan 105 

C Berkin, Doğukan, Batuhan 85 

D Berkin, Doğukan, Batuhan 16 

E Berkin, Doğukan, Batuhan 20 

F Berkin, Doğukan, Batuhan 6 

G Berkin, Doğukan, Batuhan 27 

H Berkin, Doğukan, Batuhan 13 

I Berkin, Doğukan, Batuhan 14 

J Berkin, Doğukan, Batuhan 59 

K Berkin, Doğukan, Batuhan 15 

L Berkin, Doğukan, Batuhan 11 

M Berkin, Doğukan, Batuhan 7 

N Berkin, Doğukan, Batuhan 16 

O Berkin, Doğukan, Batuhan 3 

P Berkin, Doğukan, Batuhan 6 

R Berkin, Doğukan, Batuhan 6 

S Berkin, Doğukan, Batuhan 7 

T Berkin, Doğukan, Batuhan 7 

PROJECT COMPLETITION TIME:  318 
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Figure 10. Gantt diagram of the project. 

 

(a) PERT diagram part 1 

 

 

(b) PERT diagram part 2 

Figure 11. PERT diagram of the project 
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5.CONCLUSION 

 

 As a conclusion, we adopted some point-based deep learning architectures for semantic 

segmentation of the scenes that is placed in ESOGU RAMPS dataset. These architectures were 

A-SCN, ELGS, Kd-Net, PointConv, SO-Net, and SpiderCNN. When the visual and metric 

results were considered ELGS, PoinConv, SO-Net, and SpiderCNN produce successful results 

with the dataset. On the other hand, we could not obtain successful accuracy and IoU values 

due to system problems in Kd-Net and manual input problems in A-SCN. Due to some 

anomalies in the dataset, precision-recall and IoU values between classes may show the same 

differences in different architectures. These results should be considered as a whole. Our 

simple structured dataset consisting of 2-dimensional planes has been put into training and 

testing processes with 6 different selected deep learning architectures. Some architectures 

include preprocessing by their own nature, and some have completely different data loading 

structures. The results obtained are generally motivating for studies on the ESOGU RAMPS 

dataset. 
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