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ÖZET 

 

Sel, yangın, zehirli madde yayılımı ve deprem gibi afetlerden sonra bina içi ortamlarda 

yapılması gereken arama ve kurtarma faliyetleri, binanın yapısal bütünlüğünün bozulması ve 

zehirli madde sızıntısı gibi risklerden dolayı insan ve hayvanlar için hayati tehlike 

oluşturmaktadır. Bu yüzden, robotların arama ve kurtarma görevlerinde kullanılmasına yönelik 

çalışmalar son yıllarda oldukça artmıştır. Robotların, bu zorlu ortamlarda kendilerine verilen 

görevleri yerine getirebilmeleri için yeteneklerini geliştirmeleri gerekmektedir. RoboCup ve 

DARPA gibi organizasyonlar bu gelişime katkı sağlaması amacıyla her yıl yarışmalar 

düzenlemektedir. Bu yarışmalara katılan ekipler NIST (The National Institute of Standards and 

Technology) tarafından belirlenen standart test ortamlarında robotlarının yeteneklerini 

ölçmektedirler. Bu proje kapsamında, arama ve kurtarma ekiplerine yardımcı olması amacıyla 

NIST standart test ortamlarına benzer ortamlarda 3B anlamsal harita oluşturulmuştur. 3B 

anlamsal harita bu projenin yenilikçi yönüdür. Geçmiş çalışmalarda, 3B metrik haritaya nesneler 

eklenerek anlamsal harita elde edilirken bu projede nokta bulutu şeklinde anlamsal harita elde 

edilmiştir. Böylece bütün detaylar nokta bazında haritada yer almıştır.  

 

Bu projede ilk olarak, ortamı temsil edecek olan küresel metrik harita (3B doluluk 

ızgarası) oluşturulmuştur. Küresel metrik harita voksellerden oluşmaktadır. Voxel pikselin 3 

boyutta karşılığıdır. Bu haritada yer alan vokseller bilinmeyen, boş ve dolu olarak 

sınıflandırılmıştır. Robotta bulunan RGB-D kamera yardımı ile robotun algıladığı bölgede yer 

alan vokseller boş veya dolu olarak güncellenmiştir. Ayrıca, eş zamanlı olarak ortamda bulunan 

rampalar, zemin ve duvarlar, DGCNN (Dynamic Graph CNN) nokta tabanlı 3B derin öğrenme 

mimarisi ile anlamsal olarak sınıflandırılmış ve 3B anlamsal haritanın çıkarılmasında 

kullanılmıştır. Anlamsal haritanın ürettiği rampa, duvar ve zemin bilgileri kullanılarak topolojik 

harita üretilmiştir. Bu bilgiler kullanılarak üretilen topolojik haritadaki düğümler Minimum 

Spanning Tree (MST) algoritması kullanılarak birleştirilmiştir, böylece robotun otonom olarak 

gezebileceği yol planının hazırlanması sağlanmıştır. Optimum yol planını belirlemek için 

Dijkstra algoritması kullanılmıştır. Afetzedeler ise, You Only Look Once (YOLO) ile tespit 

edilmiştir. 
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Projede üretilen 3B anlamsal harita ile, arama ve kurtarma ekipleri çalışmalarına 

başlamadan önce ortam ile ilgili detaylı bilgileri elde edilmiştir. Bu sayede, hayati risklerinin 

azalması sağlanmıştır. Ayrıca, ortaya çıkan yazılımın katma değeri yüksek bir ürün olarak yurt 

dışına ihraç edilmesi söz konusu olabilir.  

 

Anahtar Kelimeler: arama ve kurtarma robotları, 3B anlamsal haritalama, 3B metrik 

haritalama, topolojik haritalama, afetzede tespiti, nokta bulutu verisi. 
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ABSTRACT 

 

Search and rescue activities that should be carried out in indoor environments after 

disasters such as flood, fire, toxic substance spread, and earthquake may cause a life-threatening 

danger for humans and animals due to risks such as structural integrity of the building and toxic 

substance leakage. Therefore, studies that utilize robots in search and rescue missions have 

increased considerably in recent years. Robots need to improve their abilities in order to perform 

the tasks assigned to them in these challenging environments. Organizations such as RoboCup 

and DARPA organize competitions every year to contribute to this development. The teams 

participating in these competitions measure the abilities of their robots in standard test 

environments determined by NIST (The National Institute of Standards and Technology). 

Within the scope of this project, a 3D semantic map was created in environments similar to 

NIST standard test environments in order to assist search and rescue teams. The main 

contribution of this project is producing 3D semantic map. In previous studies, a semantic map 

was obtained by adding objects to the 3D metric map, while in this project a semantic map in 

the form of a point cloud was obtained. Thus, all the details are located on the map on a point 

basis.  

 

In this project, firstly, a global metric map (3D occupancy grid) was created to represent 

the environment. 3D occupancy grid consists of voxels. Voxel is a 3D form of a pixel. The 

voxels in this map are classified as unknown, empty, and occupied. All voxels are initialized 

with unknown state. With the help of the RGB-D camera in the robot, the voxels in the robot’s 

region of view have been updated as empty or full. In addition, ramps, terrain, and walls in the 

environment simultaneously were semantically classified with the DGCNN (Dynamic Graph 

CNN) point-based 3D deep learning architecture and used in the extraction of the 3D semantic 

map. The topological map was produced by using the information produced by the semantic 

map. The nodes in the topological map produced by using that information were combined using 

the Minimum Spanning Tree (MST) algorithm, thus it was provided to prepare a route plan that 

the robot could navigate autonomously. The Dijkstra algorithm was used to determine the 

optimum path plan. The victims were identified with YOLO. 
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With the 3D semantic map produced in the project, detailed information about the 

environment was obtained before the search and rescue teams started their work. In this way, 

vital risks can be reduced. In addition, it may be possible to export the resulting software abroad 

as a product with high added value. 

 

Keywords: search and rescue robots, 3D semantic mapping, 3D metric mapping, 

topological mapping, victim detection, point cloud data.  
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1. INTRODUCTION 

 

1.1. Objectives 

 

Within the scope of this project, it is aimed to create a 3D semantic map that search 

and rescue teams can benefit from. Creating 3D map is one of the subjects which increased 

its popularity in the field of robotics with the development of 3D perception technologies. 

Especially in recent years, in RoboCup competitions, 3D map quality has started to be 

evaluated as a success criterion. Semantic map and metric map are the ways of representing 

environments as 3D. For both metric and semantic maps, the point cloud data of the 

environment is required. There are many mapping packages available in ROS to obtain point 

cloud data of the environment. RTAB-Map and OctoMap are among the packages that are 

used for this purpose. In the scope of this project, we aim to provide our own mapping 

method to gather point clouds of the environment. Eventually, metric and semantic maps 

will be created with the help of the point cloud data. A metric map is obtained by representing 

a table, chair, wall, etc. which exists in the environment with voxels. In this project, it is 

planned to create a metric map with a predetermined size and resolution. Also, a point-based 

3D semantic map will be created to derive the planes that are ramps, walls, and terrains. It 

is also aimed to create a topological map from a semantic map. After the topological map is 

created, its nodes will be used to navigate in the environment. In order to detect the victims 

in the environment, the YOLO algorithm will be used.  

 

1.1. Novelty 

 

With the project is successfully completed, the targeted product will be a software 

capable of 3D mapping in indoor environments after the disaster. This software is well suited 

for these environments as it will be fed with point clouds. Software that successfully 3D 

mapping using object recognition and image data are available in previous studies. However, 

the success of these studies directly depends on the quality of lighting. There will probably 

be no electricity in the indoor environments after the disaster. In this case, problems in the 

lighting of these environments will cause the software running using existing image data to 

fail. Two main problems are still waiting to be solved in software that creates exploration 
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and 3D semantic maps using point cloud data. The first problem is that the computational 

cost increases due to the large number of points in the point cloud. In previous studies, it has 

been tried to create a 3D occupancy grid by keeping the point cloud data in data structures 

such as an 8-tree structure (octree). However, this technique may not be efficient. In order 

to increase the efficiency, we have created a 3D array in which we stored the voxels with 

their centers. The sizes of the array and the resolution of the voxels were predetermined. 

Initially, all the voxels were assumed to be unknown. As the robot moved, the voxels were 

labelled as free or occupied. With this method, we accelerated the creation of the metric map.  

 

Deep learning architectures, which have been very popular in recent years, are used 

to determine the semantic class of each point on the map. Thus, semantic classification is 

made on point basis with high accuracy. Moreover, we obtained the topological map with 

the help of the ramps, walls, and terrain information of the semantic map.  

 

2. REQUIREMENTS SPECIFICATION 

 

Significant technological developments in the fields of software and hardware in 

recent years have increased the studies for the widespread use of robots in many areas. One 

of these areas is mapping of indoor environments after disasters such as floods, fires, toxic 

substances spread and earthquakes. Organizations such as RoboCup and DARPA, organize 

competitions in order to measure whether robots have the necessary hardware and software 

capabilities to perform this task. RoboCup organization has organized various competitions 

regarding search and rescue tasks every year since the early 2000s and evaluated the teams 

participating in the competition according to certain standards and criterias. Kitano and 

Tadokoro [1], in their study conducted in 2001, evaluated the difficulties that robots may 

encounter in search and rescue tasks, current technologies and developments that need to be 

made. In the light of these evaluations, new and more demanding standards and criteria are 

determined every year, so the capabilities of robots have been improved. In the evaluation 

made by Sheh et al. [2] in 2016, the improvements made by robots have been revealed thanks 

to the RoboCup competitions. The competitions held in 2016 and later have focused on 

mapping. In the previous studies, methods that successfully perform the 3D mapping task 

using image data has been proposed [3,4]. However, image data is not suitable for post-

disaster search and rescue environments where lighting conditions are bad, dusty and low 
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visibility. Therefore, teams participating in RoboCup competitions generally prefer to use 

sensors that can generate point clouds such as 2D and 3D laser, LiDAR and RGB-D cameras. 

For example, Yıldız robot, which was developed by Yıldız Technical University's Yıldız 

team and earned them first place in the search and rescue class in the RoboCup competition 

in 2016, has a UTM-30LX laser and a Kinect RGB-D camera [5]. In the past years, teams 

participating in RoboCup competitions have benefited from various mapping methods using 

the mentioned sensors for 3D mapping. For example, in the RoboCup organization held in 

2018, the Cambridge University team is used the gmapping method, while the Yıldız Team 

is used the R-SLAM (Simultaneous Positioning and Mapping) method. Besides all these, 

there are frequently used methods such as hector_mapping [6], OctoMap [7] and real-time 

appearance-based mapping (RTAB-Map) [8] [9].  

 

Within the scope of this project, it is aimed to perform 3D semantic mapping by using 

the Asus Xtion Pro RGB-D camera located on the robot. This map will be created for search 

and rescue teams to have detailed information about the environment before they start their 

activities. Unlike previous studies, objects such as ceilings, floors, walls, flat and inclined 

ramps and victims will be included in the 3D map to be created within the scope of this 

project. In order to achieve this, firstly, the basic information obtained through the robot's 

sensors will be transferred to a global metric map (3D occupancy grid) by using the RTAB-

Map method. 3D occupancy grid will also be created using 3D array. In 3D array, the empty, 

occupied and free cells will be stored.  In order for the robot to create the semantic map, it 

is required to semantically classify the points as wall, floor, inclined and flat ramp in the 

point cloud data obtained with the RGB-D camera. To achieve this, it would be a suitable 

solution to use point-based deep learning architectures. In their study, Turgut and Kaleci 

[10] implemented the PointNet, PointNet ++, DGCNN, and PointCNN architectures in order 

to determine the semantic classes of wall, floor, inclined and flat ramp objects in search and 

rescue areas. And they discussed the positive and negative aspects of these architectures. It 

was decided to use the DGCNN method by making use of this study. It is aimed to create a 

path plan in order to reach the determined goal or goals. Topological map will be used to 

create this path plan and shortest path finding methods will be used. In cases where there is 

only one target, Dijkstra's [11] method will be used to create the path plan. After the path 

plan is created, the robot will perform the navigation task to reach the given destination. In 

order to be successful in this task, appropriate linear and angular velocities should be 
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determined in the environment where there are ramps. The robot will continuously update 

its 3D metric. Finally, the robot must detect the victims in the environment and show their 

locations accurately. Previous studies include architectures that have been successful in 

identifying people, such as YOLO [12], SSD, RCNN and Faster RCNN. Among these 

methods, it is decided to use the YOLO method, by considering the detection speed and 

detection distance criteria. 

 

3. PROPOSED METHODS 

 

In this section, creating metric, semantic and topological maps’ steps will be detailly 

explained. Besides, the path planning and victim detection steps will be mentioned. 

 

3.1. Creating Metric Map 

                     

Robots generally need an accurate representation of the environment in order to 

perform the tasks assigned to them. Metric and topological mapping methods have been used 

frequently for this representation in previous studies . Metric maps are usually represented 

by grids in 2D space those divide the environment into equal-sized cells. Although metric 

maps can be created easily, it requires high processing power when the number of cells are 

increased. On the other hand, since topological maps are expressed with nodes and edges 

connecting the nodes, they reduce the required processing power and work more efficiently 

in real-time applications. The main disadvantage of topological maps compared to metric 

maps is that they are more difficult to create [18].  

 

An example metric map is shown in Figure 1. In the figure, gray, green, and red 

colors show unknown, empty, and occupied voxels, respectively. 
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Figure 1. Metric map 

 

Within the scope of this project, the metric map of the indoor environment in the 

search and rescue environment has been created with a 3D occupancy grid. In order to create 

the 3D metric map, RGB-D camera has been used in the Gazebo simulation environment. 

Common mapping methods such as OctoMap and RTAB-Map are suitable to create the 

metric map. Silva et al. [9] discussed the positive and negative aspects of OctoMap and 

RTAB-Map methods which are used for post-disaster search and rescue tasks in their study. 

The authors stated that the installation of RTAB-Map and it’s use in ROS offers a more user-

friendly experience, contrary to RTAB-Map, more intense procedure should be used for 

most operations to be performed in OctoMap. In addition, while 3D object classification can 

be done with RTAB-Map method and objects whose classes are determined can be 

transferred to the map, OctoMap method does not have such a capability. For these reasons, 

it was preferred to use the RTAB-Map method in this study.        

                                                                                                                                                                                                            

Initially, we used RTAB-Map in order to obtain the metric map [17]. In the study, 

the point cloud data is converted into voxels using octree data structure. In the creation of 

the metric map, the semantic map is used as well. From the walls, terrain, inclined and 

straight ramps, the voxels are labelled as red, yellow, blue, and pink respectively. RTAB-

Map was very useful for creating metric map because the point cloud data represents free 

cells of the environment was already available in the package itself. The point clouds 

respresent the occupied spaces in the environment were also obtained by using RTAB-Map 

at the first stage of our study. The robot was moved in the environment with teleoperation 

method and 160 Point Cloud Data (PCD) has been gathered. Each of these point cloud data 
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processed seperately and created an metric map with these seperate point cloud datas. In 

order to create metric map, octree structure available in PCL libraries has been utilized. With 

the help of the RTAB-Map and PCL, the free and occupied voxels has been generated. We 

also represent occupied cells with blue, pink, red and yellow in order to show the inclined 

ramps, straight ramps, walls and terrain in the environment, respectively. Which of the cells 

belong to which of the class were determined by using semantic map which means that 

semantic map was used in the stage of creating metric map.  

 

After the metric map with the data obtained from RTAB-Map has been created, we 

have made our own mappig by which we also created a metric map. As it is stated, the point 

cloud data which represent free and occupied spaces in the environment was already 

available in RTAB-Map. However, our own mapping method provides us only the point 

clouds that represent occupied spaces in the environent. For this reason, we also determined 

the free cells in the environment with our own algorithm. We tested the algorithm with large 

environment as well. Without  depending the environemnt size, the speed for determining 

the free and occupied voxels was the same.  

 

In the algorithm, we first determined resolution and sizes of the environment and 

created a 3D array where the center information about metric map was stored. If the voxel 

is free, its value is 1, if the voxel is occupied, its value is 0 and lastly, if the voxel is unknown, 

its value is 0.5. Initially, all voxels in the environment were assumed to be 0.5 which means 

unknown. As the robot moved around, the voxels are labelled as free or occupied. According 

to algorithm we designed, constructing a metric map consists of 2 stages. The first stage is 

to find the occupied voxels and the second stage is to find free voxels. In the first stage, the 

process is simple. The point cloud data obtained from our own mapping method is used. The 

points are avaiable with their location information in point cloud vector and must be 

determined which of the points belong to which of the voxel. A voxel may contain many 

points and most probably it will since the resolution we determined for metric map is 0.1 m. 

In order to determine the voxel they belong to a simple process is applied. The global 

location of the points are divided by the resolution of the metric map and converted to 

integer. If the point is located in position x = 1.2, y = 3.1, and z = 0.8, this would mean that 

the point belong to voxel with indexes 12, 31, and 8. The problem here is that, there may be 

more than 1 point in one voxel. As a result of that, the same voxel may be needed to be 
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accessed many times in vain. To overceome this problem the voxels’ locations are first stored 

in standard template library set. After all the point are checked, the 3D array is updated. In 

the next step only the unknowns are taken into account. In this way, the repeated processes 

are prevented. In the second stage of the algorithm, the free voxels are determined and the 

array is updated one more time. The process of finding the free voxels a little bit more 

complicated than finding occupied voxels. First, the odometry information of the robot is 

required. The camera pose is obtained from odometry info. To do this, the transformation 

must be applied between odometry and camera. This process is repeated at each step. After 

the camera pose is obtained, the voxels in free space are found. Secondly, the artificial lines 

are created between the robot’s pose and the obstacles. The points on the line are advanced 

step by step. The voxels that the points belong to are found. Lastly, the array is updated as 

free up to the point where occupied voxel is found.  

 

3.2. Creating Semantic Map 

 

Within the scope of this project, semantic map was created mainly to provide detailed 

information for search and rescue teams in indoor environments after disasters. In addition, 

it was planned to assign semantic classes to the nodes of the topological map and to use the 

semantic map during navigation. Thus, this information can be used while planning  the path. 

Point cloud data obtained by the robot‘s RGB-D camera was used to create a semantic map 

of the environment. Point-based deep learning architectures was used to decide whether each 

point in this point data belongs to the floor, wall, inclined or straight ramp classes. In their 

study, Turgut and Kaleci [10] collected point cloud data from the Gazebo environment given 

in Figure 2 and created a dataset called ESOGU RAMPS, which contains points belonging 

to floor, wall, inclined or flat ramp classes. Later, PointNet, PointNet ++, DGCNN, and 

PointCNN point-based deep learning architectures were employed to train the dataset. 

PointNet architecture evaluates points independently and individually. Local features are 

extracted for points using multilayer networks. Then, these local features are summarized 

with the maximum pooling method and global features are obtained. Finally, semantic class 

is decided by combining global and local features. PointNet ++ architecture uses local area 

to extract the properties of points. This local area is always created according to the x, y and 

z coordinates of the point and the local features of a point are decided by using all points in 

this region. This local area is expanding in each layer. DGCNN architecture also extracts the 
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properties of the point by using local regions like PointNet ++. However, in this architecture, 

local regions are created with K neighbors for each point. Also, the feature space is 

considered to decide on these K neighbors after the first layer. Unlike other architectures, 

PointCNN architecture evaluates points together with their neighbors, not individually, in 

the feature extraction phase. The results obtained with these architectures are given in Figure 

2. In the figure, red, yellow, blue and pink show walls, floors, sloped and straight ramps, 

respectively. White ellipses are used to draw attention to the points that are classified 

incorrectly. When Turgut and Kaleci [10] evaluated the numerical and visual results 

together, they concluded that the DGCNN architecture outperformed other architectures. 

 

It was decided to use DGCNN architecture within the scope of this project. Using the 

model trained for this architecture, the semantic class of each point in the point cloud data 

that the robot instantly receives will be decided. Then these points were added to the 

semantic map. 
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Figure 2. Semantic classification result [10] 

 

Within the scope of this project, semantic map was created mainly to provide detailed 

information for search and rescue teams in indoor environments after disasters [17]. Firstly, 

point cloud data was obtained by the robot’s RGB-D camera that was used to create a 

semantic map of the environment. Point-based deep learning architectures was used to 

decide whether each point in this point data belongs to the floor, wall, inclined or straight 

ramp classes. There are several kind of point-based deep learning approaches, in this scope 

of this project DGCNN architecture that is more suitable for search and rescuae areas are 

used. Using the model trained for this architecture, the semantic class of each point in the 

point cloud data that the robot instantly receives will be decided. Then these points were 

added to the semantic map and the map will grow step by step. In Figure 3, two adjacent 

scenes were merged and they were given different colors. 

 

 
Figure 3. Semantic map 
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In the semantic map, after using DGCNN architecture, different classes were 

obtained. They were also labeled by giving different colors. Walls, terrains, inclined ramps 

and straight ramps are assigned to red, yellow, blue and pink, respectively. Figure 4 

illustrates that process. 

 

 

Figure 4. Clustering planes 

 

In addition assigned semantic classes are used for generating the nodes of the 

topological map and to use the semantic map during navigation. Thus, this information can 

be used while planning the path. In order to achive this process each plane should be 

determined. In this way terrain will be used to generate the nodes on it also each wall plane 

helps to determine edge of the minimum spanning tree algorithm. In this way path can be 

generated to navigate on the map properly. In order to achive this process RANSAC 

(Random Sample at Consensus) algorithm is used to segment each planes. RANSAC extracts 

the mathematical equations from planes. However, different planes can be modeled as same 

mathematical equation. Take into account this problem, Region Growing method is used to 

separate this planes. Figure 5 depicts that segmented planes with RANSAC. 

 

 
Figure 5. Segmenting planes 
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Storing each segment in the memory is an issue that consumes more memory. In 

order reduce to memory usage, bounding boxes are stored in the memory. In this way, same 

process can be performed with less memory usage. Figure 6 illustrates that incremental 

growing of the map with bounding boxes. 

 

 

Figure 6. Bounding box 

 

3.3. Creating Topological Map 

    

Topological map is a mapping method, that represent the environment with nodes 

where they place at critical regions and the edges connecting these nodes. Nodes in the 

topological maps are created to derive a path plan of the environment. By generating nodes 

in required locations and connecting them by considering the lowest edge weights, efficient 

path plans can be generated from topological maps. Thus, the required amount of memory 

is significantly decreasing with the use of more suitable structures for creation of topological 

map [18]. An example topological map is shown in Figure 7. 

 

 
Figure 7. Topological map nodes 
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In this study, different from the studies in the literature, the information produced by 

the semantic map was used to generate the topological map. In this project, by obtaining the 

semantic map, we derived the bounding boxes of wall, ramp, and terrain segments in each 

data. Then, the nodes are created considering the type of the planes. Nodes are located on 

the middle of the straight ramps and terrains. In contrast of the straight ramps and terrain, 

nodes are located on the bottom points of inclined ramps. In this way, sliding is prevented 

when the robot stops on the node for generating a new path plan. During the generation of a 

new node on the terrain segments, euclidean distances between previously generated nodes 

are calculated. In this way, as minimum as possible number of nodes are generated. At the 

same time with generating nodes, we also created the environment by combining and 

visualizing the bounding boxes by using Point Cloud Library (PCL).  

 

After obtaining the nodes, we pass to the stage of connecting the nodes in the 

topological map. In order to navigate the environment autonomously, a path plan must be 

generated. However, considering the locations of the nodes in the environment, it is clear 

that it is not possible to create a path plan by directly connecting the nodes.  

 

We used the minimum spanning tree method to connect the nodes. The minimum 

spanning tree is a subset of the interconnected edges that are connecting all the nodes in the 

environment with the minimum edge weight. In this method, an adjacency matrix is created, 

then the closest nodes in this matrix are connected and the connection having the lowest cost 

from the starting node to the target node is created. There is an issue of connecting the nodes 

that an edge may be intersect with a wall as shown in Figure 8. 

 

In order to obtain collision-free minimum spanning tree, all edges must be checked 

with the process mentioned above. If an edge does not intersect any wall in the known 

environment, the nodes are connected. Otherwise, the weight between these nodes is updated 

with a huge number and the process of generating minimum spanning tree is repeated until 

we obtain collision-free minimum spanning tree. 
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Figure 8. Wall edge intersection problem 

 

In order to solve this problem, firstly, parametric equation of the line which is 

between the nodes illustrated in Figure 9 is calculated using following equations. 

 

 
Figure 9. Connection of two nodes 

 

𝑥 = 𝑥0 + (𝑥1 − 𝑥0)𝑡 (1) 

𝑦 = 𝑦0 + (𝑦1 − 𝑦0)𝑡 (2) 

𝑧 = 𝑧0 + (𝑧1 − 𝑧0)𝑡 (3) 

      

After that, plane equation is obtained using RANSAC (Random Sample at 

Consensus) from the wall plane is illustrated in Figure 10. 

 

 
Figure 10. Wall plane 
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The related plane equation of the wall in Figure 10 is given in equation 4. 

 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (4) 

 

Finally, intersection coordinates are obtained by following equations. 

 

𝑥𝑐 = 𝑥𝑠 −
A(𝐴𝑥𝑠 + B𝑦𝑠 + C𝑧𝑠 + D)

𝐴2 + 𝐵2 + 𝐶2
 

 

(5) 

𝑦𝑐 = 𝑦𝑠 −
B(𝐴𝑥𝑠 + B𝑦𝑠 + C𝑧𝑠 + D)

𝐴2 + 𝐵2 + 𝐶2
 

 

(6) 

𝑧𝑐 = 𝑧𝑠 −
C(𝐴𝑥𝑠 + B𝑦𝑠 + C𝑧𝑠 + D)

𝐴2 + 𝐵2 + 𝐶2
 

 

(7) 

 

3.4. Preparing the Path Plan 

 

After we build the topological map, we consider the shortest path problem to generate 

the robot's path plan. At this stage, Dijkstra's algorithm, which is one of the most common 

algorithms used in the solution of the shortest path problem, is used in this study to create 

the lowest cost path plan. Dijkstra's algorithm is using the topological map to calculate the 

path plan. First, the robot finds the closest node to itself in the topological map. This node 

can be called the starting node. Similarly, the closest node to the target is decided. The cost 

of movement of the robot from the starting node to each node connected to this node is 

calculated and the lowest cost node is marked. After the first marked node, the cost will be 

calculated similarly, the following nodes are marked so the lowest cost path plan is created. 

 

3.5. Human Detection in the Map 

 

Identifying the location of victims in disaster environments is very important for 

search and rescue activities in order to save victim’s life. It may be appropriate to utilize 

deep learning architectures to accurately and quickly identify the victim in complex 
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environments such as disaster environments. In this context, it was used the third version of 

YOLO (You Only Look Once) architecture, which detects objects by passing the image 

through an artificial neural network at a time. Compared to the existing object detection 

algorithms in previous studies, YOLO can detect objects quickly as well as successfully, and 

can recognize objects of different scales and sizes. When the victim has been identified with 

YOLO, the location of the victim in the environment was also determined. The Figure 11 

illustrates the environment with a victim. 

 

 
Figure 11. Gazebo environment with a victim 

 

4. EXPERIMENTAL RESULTS 

 

4.1. Experimental Setup 

 

Before testing the methods developed within the scope of the project using real 

robots, observing how these methods work in simulation environments such as GAZEBO 

[13] and whether they produce the desired results are frequently used in the field of robotics. 

For this purpose, a 6x4 meter environment, similar to the one used in RoboCup competitions 

(Figure 12(a)), containing objects such as straight ramps, inclined ramps, and wall planes, 

which are determined by NIST, was created to be used in real robot tests of the project. The 

same environment was created in the Gazebo simulation environment using the 

hector_nist_arenas_gazebo [14] package that is shown in Figure 12(b). In addition, the first 

floor of the 52x15 meter ESOGU Electrical and Electronics Engineering Laboratory building 

was modeled in the GAZEBO environment. (Figure 13).  
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(a) (b) 

Figure 12. Real test environment. (a) Gazebo test environment. (b) 

 

 
Figure 13. Esogu electrical and electronics engineering laboratory building gazebo model 

 

A Pioneer 3-AT mobile robot [15] with Asus Xtion Pro RGB-D camera was launched 

in Gazebo simulation environment. The Robot Operating System (ROS) [16] was used to 

receive data from the sensors on the robot and to send data to the robot's motors. At this 

stage of the project, color visual perception and depth information were obtained with the 

RGB-D camera.  
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4.2. Metric Map Results 

 

In the scope of the project, metric map was created by using RTAB-Map at first. 

Then, the metric map was created with out own mapping method. 

 

4.2.1. Metric Map by Using RTAB-Map 

 

The results obtained are shown in Figure 14 [17]. These are the results of the study 

conducted by Kocaoglu et al. In the study, the metric map is created for 160 sequential steps. 

The inclined ramps, straight ramp, walls, and terrain are colored blue, pink, red, and yellow, 

respectively. The information of each plane is obtained from semantic map.  

 

In Figure 14(a), the step 40, in Figure 14(b), the step 80, in Figure 14(c), step 120, 

and lastly in Figure 14(d), step 160 are illustrated. Here, the results are obtained by using 

RTAB-Map. The free voxels are not shown since it hides the ramps, and terrains. 

 

  
(a) Metric map step 40 (b) Metric map step 120 

  
(c) Metric map step 80 (d) Metric map step 160 

Figure 14. 3D metric map, step 120 and 160 
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4.2.2. Metric Map by Using Our Own Mapping Method 

 

In Figure 15(a) only occupied voxels are shown since free voxels hides the occupied 

voxels that correspond to the ramps and walls . However, the shape of the ramp is not so 

clear due to resolution we determined. As the resolution increases, the ramp becomes more 

visible. The metric map obtained from that scene is shown in Figure 15(b). 

 

  

(a) (b) 

Figure 15. Metric map with occupied cells. (a) Metric map with occupied and free cells. (b) 

 

 In the Figure 16, the step by step creation of metric map is illustrated. The free and 

occupied voxels are extracted from predefined array, and then they are visualized by using 

Rviz.  
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Figure 16. Metric map creation process 

 

4.3. Semantic Map Results 

 

In order to generate semantic map, DGCNN architecture was utilized after 

preprocessing steps. Gathered point cloud data divided into sub blocks as a preprocessing 

step for taking into account local features. The blocks are divided into 1 m2 size considering 

the xy plane. Point-based deep learning architectures require a fixed number of points in 

each block. In experiments, we selected the fixed number as 4096. However, in some blocks, 

the number of points are greater or lower than 4096. In order to handle this problem random 

downsampling or undersampling was performed. The architecture is fed with the data which 

consists of x, y, z and normalized x, y, z coordinates regardless of color information. Finally, 

DGCNN point-based deep learning architecture with default parameters for segmentation 

was utilized. After each scene is semantically classied the entire semantic map was obtained 

as shown in Figure 17. 
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Figure 17. Semantic map of the environment 

 

4.4. Topological Map Results 

 

The members of every single segment existing in the environment are taken into 

account separately during the node generation process. While generating the nodes on the 

straight ramp, because of its large size, we divided it into two parts and we determined the 

midpoints of these parts. After that, we created the nodes at these specified points.  

 

 In the navigation, robot may stop and update the path plan at any node it visits. 

Therefore, it is necessary that the ground on which the robot stands should be flat and the 

robot should not lose it’s position by sliding. For this reason, nodes are located at the bottom 

points of inclined ramps. In this way, the robot can be prevented from sliding due to the 

slope of ramps and thus the position of the robot may remain the same.  

 

Besides the generating nodes at the locations where they are most needed, it is also 

important to have the minimum number of nodes as possible as to cover the entire 

environment. Therefore, we considered the distances between the nodes on inclined ramps 

and terrain while generating the nodes. If the nodes are created in a similar manner to the 

previous segments, there will be many nodes on terrains that are unnecessary and slow down 

the generation of robot path plan. That’s why we considered the specified points for the 

nodes of inclined ramps to apply a node generation algorithm by using the distance between 

the centers of inclined ramps and terrains.  
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By applying the mentioned methods, we generated nodes of the topological map for 

each scene which represents the environment sufficiently and efficiently as seen in the Figure 

18.  

 

  

  
Figure 18. Node generation steps 

 

For every step that the information is provided by the semantic map, the point cloud 

data are processed and the topological map is obtained step by step. The nodes are visualized 

with yellow, blue, and pink for the terrain, inclined ramp and straight ramp segments 

respectively. In this way, it is seen on which segments the nodes are generated. At the first 
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scene, the robot is seen only the ramps, so two nodes on the inclined ramps are generated. 

At the scenes following the first scene, the produced point cloud data are processed and the 

remaining parts of the node generation section of topological map is created. 

 

The wall, ramp and terrain segments are visualized by using the bounding boxes that 

are provided from the semantic map.  

 

In order to obtain the topological map, after the creation of nodes, we connected the 

closest nodes according to the order of creation of the scenes by using the coordinates of the 

nodes we produced while generating them. After this stage is completed, it is necessary to 

check whether there is a wall between the nodes that are connected. 

 

When the robot navigating autonomously, this intersected edges causes to crash. In 

order to take into account this problem, line – plane intersection was calculated and 

problematic edges connected to proper nodes. 

 

Mentioned processes in the proposed method section are integrated into minimum 

spanning tree algorithm in order to avoid improper edge connection. When the edge will be 

created, firstly it is needed to check is intersect with the wall, if it is not intersecting any wall 

then connect two nodes. If there is a wall between 2 connected nodes, it is necessary to rerun 

the minimum spanning tree function by assigning more weight to the value of those 2 nodes 

in the neighborhood matrix. 

 

 

Figure 19. Topological map of the environment 
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After applying the MST method, the topological map of the environment consisting 

of the connected nodes is created as seen in Figure 19. After applying the node generation 

and MST algorithms, the topological map of the entire environment is obtained. The 

adjacency matrix that is produced in this part is provided to Dijkstra’s shortest path algorithm 

to derive the shortest path for the navigation. 

 

4.5. Navigation Results 

 

In the environment where the robot is moving, there are ramps so we need to give 

the speed low to provide stable movement of the robot or utilize the semantic map in order 

to decrease the speed when the robot is to climb or descend the ramp. At this part, we gave 

the robot a low speed that is 0.2 m/s so that we provided the stable movement of the robot. 

It is also required to give the robot rotating speed when the destination is not in the same 

direction as the robot’s direction. In order to determine how much and to which direction the 

robot should move, we first created a line in the direction of the robot which is in the x-

direction. As the robot moved, the line also moved in the direction of the robot. Then we 

compared the 2 lines with their angles. The first line is the line we created at the beginning 

of the navigation, and the second line was created from the robot’s position to the determined 

destination. By doing so we have obtained 2 lines whose angles must be the same in order 

to make the robot move in the direction of the destination. Different turning speeds and 

turning directions were given to the robot at the required situation by which the robot became 

more stable and saved time. For example, if we presume that the robot must turn 90 degrees 

to line up with the goal, the robot may turn 90 degrees which is logical or the robot may also 

turn 270 degrees to match up the 2 lines which provide the requirement but illogical. At this 

point, we gave conditions to make it turn 90 degrees but not 270 degrees. The other condition 

given to the robot was the turning speed. We adjusted the turning speed of the robot 

according to the angle difference between the 2 lines. If the angle is wider, we set the turning 

speed to higher. As the angle difference gets smaller the turning speed was also set to lower 

speeds. 

 

An example of robot’s navigation is shown in Figure 20 and. In the figure, the robot 

is at location 6 at first, and it is expected to go location 9. The nodes which should be 

followed by the robot 6, 7, 8, and finally 9. This path plan is obtained by using Dijkstra.  
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Figure 20. Navigation process 

 

4.6. Victim Detection 

 

In order to detect victim in the disaster area, third version of pre-trained YOLO 

architecture is utilized. Results are obtained as depicted in Figure 21. 

 

 

Figure 21. Victim detection with yolo 
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5. Tools, Hardwares and Softwares 

 

• Python 

• C++ 

• GAZEBO 

• UBUNTU 

• ROS 

• RTAB-Map 

• PCL 

• Cloud Compare 

• Tensorflow 

• Pioneer P3-AT Mobile Robot 

• ASUS XTION RGB-D Camera 

 

6. Project Management 

 

Table 1.  Work packages 

N

o 
Work Packages 

Responsible 

Team 

Member(s) 

Time Intervals 

Success Criteria and 

Contribution to the Success of 

the Project 

1 

Preparing the 

Environment and 

the Robot for 

Simulation Tests 

 

Muhammed 

KOCAOĞLU 

Muhammed Ali 

UZUN 

1 November – 15  

November 

When the robot is started in 

GAZEBO, obtaining point cloud data 

from RGB-D camera and position 

information from step counter from 

the simulation environment will be 

deemed successful. Its contribution 

to our project will enable the 

methods developed before the real 

environment tests to be experienced 

in the simulation environment. 

2 
Creating the 

Metric Map 

Muhammed 

KOCAOĞLU 

 

15 November – 1  

January 

The fact that the map shows the 

ramps and walls in their correct 

positions and can do this in 

environments with dimensions of 

6x4 and 52x15 meters will be 

considered as success 

criteria.When this work package is 
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successful, we will have a map 

where we can create the topological 

map in our project.  

3 Topological Map 
Muhammed Ali 

UZUN 

1 November – 1 

January 

Expressing the entire environment 

with as few nodes as possible will be 

considered as a success criterion. 

Nodes in the map will be produced. 

4 
Creating 

Semantic Map 

Yunus Emre 

IŞIKDEMİR 

 

1 January – 15 

February 

Expressing the entire environment 

as a point cloud and determining the 

semantic classes of the points in this 

point cloud. Its contribution to the 

project is to obtain a map that can be 

used by search and rescue teams. It 

can also be used to create 

topological map.  

5 

Preparing a Path 

Plan for the 

Determined 

Target  

Point / Points of 

the Robot 

Muhammed Ali 

UZUN 

Yunus Emre 

IŞIKDEMİR 

 

15 February – 1 

April 

Calculation of the shortest path for 

the robot to reach the given frontier 

or frontiers will be considered as a 

success criterion. With this package, 

the optimal route plan will be 

created.  

6 

Navigation for 

the 

Implementation 

of the Path Plan. 

Muhammed 

KOCAOĞLU 

15 February – 1 

April 

The robot's reaching the waypoints 

and the frontier without tipping will 

be counted as success criteria. This 

step will avoid unwanted interruption 

of the exploration process in the 

project. 

7 

Human 

Detection in the 

Map 

Muhammed 

KOCAOĞLU 

Yunus Emre 

IŞIKDEMİR 

Muhammed Ali 

UZUN 

 

1 April – 1 May 

The robot's finding all the victims in 

the environment will be considered 

as success criteria. Its contribution 

to the project will require less time for 

search and rescue teams to reach 

the victims as they know their 

location. 

 

6.1. Gannt Chart 

 

The gannt chart is created to plan the process of our studies. It is illustared in Figure 

22. 
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Figure 22. Gannt chart 

 

7. CONCLUSIONS 

 

Within the scope of this project, a 3D map of the environment was created in a 

simulation environment using the Pioneer 3-AT robot in the indoor environment after the 

disaster. The data collected as point clouds from the environment were classified as wall, 

floor, straight and inclined ramps, and a semantic map was drawn. Then the metric map was 

created as 3D array with predetermined size and resolution. Topological map was obtained 

by using segment information produced in semantic map. After that, by applying MST 

algoritm to the derived nodes, the connections between nodes were provided. The dijkstra 

algoritm was used to provide path planning to the robot. With the path planning derived from 

dijksta, the navigation of the robot was realized.   
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