
i

SEMANTIC CLASSIFICATION IN SEARCH AND

RESCUE ENVIRONMENTS

by

151220164090 MUHAMMED KOCAOĞLU

151220164064 MUHAMMED ALİ UZUN

151220164012 YUNUS EMRE IŞIKDEMİR

A Graduation Project Report

Electrical Electronics Engineering Department

JUNE 2021

ii

SEMANTIC CLASSIFICATION IN SEARCH AND

RESCUE ENVIRONMENTS

by

151220164090 MUHAMMED KOCAOĞLU

151220164064 MUHAMMED ALİ UZUN

151220164012 YUNUS EMRE IŞIKDEMİR

has been approved by

Supervisory Committee

Asst. Prof. Dr. Burak Kaleci

Prof. Dr. Osman Parlaktuna

Asst. Muhammed Oğuz Taş

Prof.Dr. Gökhan Çınar, Chairperson

iii

ÖZET

Sel, yangın, zehirli madde yayılımı ve deprem gibi afetlerden sonra bina içi ortamlarda

yapılması gereken arama ve kurtarma faliyetleri, binanın yapısal bütünlüğünün bozulması ve

zehirli madde sızıntısı gibi risklerden dolayı insan ve hayvanlar için hayati tehlike

oluşturmaktadır. Bu yüzden, robotların arama ve kurtarma görevlerinde kullanılmasına yönelik

çalışmalar son yıllarda oldukça artmıştır. Robotların, bu zorlu ortamlarda kendilerine verilen

görevleri yerine getirebilmeleri için yeteneklerini geliştirmeleri gerekmektedir. RoboCup ve

DARPA gibi organizasyonlar bu gelişime katkı sağlaması amacıyla her yıl yarışmalar

düzenlemektedir. Bu yarışmalara katılan ekipler NIST (The National Institute of Standards and

Technology) tarafından belirlenen standart test ortamlarında robotlarının yeteneklerini

ölçmektedirler. Bu proje kapsamında, arama ve kurtarma ekiplerine yardımcı olması amacıyla

NIST standart test ortamlarına benzer ortamlarda 3B anlamsal harita oluşturulmuştur. 3B

anlamsal harita bu projenin yenilikçi yönüdür. Geçmiş çalışmalarda, 3B metrik haritaya nesneler

eklenerek anlamsal harita elde edilirken bu projede nokta bulutu şeklinde anlamsal harita elde

edilmiştir. Böylece bütün detaylar nokta bazında haritada yer almıştır.

Bu projede ilk olarak, ortamı temsil edecek olan küresel metrik harita (3B doluluk

ızgarası) oluşturulmuştur. Küresel metrik harita voksellerden oluşmaktadır. Voxel pikselin 3

boyutta karşılığıdır. Bu haritada yer alan vokseller bilinmeyen, boş ve dolu olarak

sınıflandırılmıştır. Robotta bulunan RGB-D kamera yardımı ile robotun algıladığı bölgede yer

alan vokseller boş veya dolu olarak güncellenmiştir. Ayrıca, eş zamanlı olarak ortamda bulunan

rampalar, zemin ve duvarlar, DGCNN (Dynamic Graph CNN) nokta tabanlı 3B derin öğrenme

mimarisi ile anlamsal olarak sınıflandırılmış ve 3B anlamsal haritanın çıkarılmasında

kullanılmıştır. Anlamsal haritanın ürettiği rampa, duvar ve zemin bilgileri kullanılarak topolojik

harita üretilmiştir. Bu bilgiler kullanılarak üretilen topolojik haritadaki düğümler Minimum

Spanning Tree (MST) algoritması kullanılarak birleştirilmiştir, böylece robotun otonom olarak

gezebileceği yol planının hazırlanması sağlanmıştır. Optimum yol planını belirlemek için

Dijkstra algoritması kullanılmıştır. Afetzedeler ise, You Only Look Once (YOLO) ile tespit

edilmiştir.

iv

Projede üretilen 3B anlamsal harita ile, arama ve kurtarma ekipleri çalışmalarına

başlamadan önce ortam ile ilgili detaylı bilgileri elde edilmiştir. Bu sayede, hayati risklerinin

azalması sağlanmıştır. Ayrıca, ortaya çıkan yazılımın katma değeri yüksek bir ürün olarak yurt

dışına ihraç edilmesi söz konusu olabilir.

Anahtar Kelimeler: arama ve kurtarma robotları, 3B anlamsal haritalama, 3B metrik

haritalama, topolojik haritalama, afetzede tespiti, nokta bulutu verisi.

v

ABSTRACT

Search and rescue activities that should be carried out in indoor environments after

disasters such as flood, fire, toxic substance spread, and earthquake may cause a life-threatening

danger for humans and animals due to risks such as structural integrity of the building and toxic

substance leakage. Therefore, studies that utilize robots in search and rescue missions have

increased considerably in recent years. Robots need to improve their abilities in order to perform

the tasks assigned to them in these challenging environments. Organizations such as RoboCup

and DARPA organize competitions every year to contribute to this development. The teams

participating in these competitions measure the abilities of their robots in standard test

environments determined by NIST (The National Institute of Standards and Technology).

Within the scope of this project, a 3D semantic map was created in environments similar to

NIST standard test environments in order to assist search and rescue teams. The main

contribution of this project is producing 3D semantic map. In previous studies, a semantic map

was obtained by adding objects to the 3D metric map, while in this project a semantic map in

the form of a point cloud was obtained. Thus, all the details are located on the map on a point

basis.

In this project, firstly, a global metric map (3D occupancy grid) was created to represent

the environment. 3D occupancy grid consists of voxels. Voxel is a 3D form of a pixel. The

voxels in this map are classified as unknown, empty, and occupied. All voxels are initialized

with unknown state. With the help of the RGB-D camera in the robot, the voxels in the robot’s

region of view have been updated as empty or full. In addition, ramps, terrain, and walls in the

environment simultaneously were semantically classified with the DGCNN (Dynamic Graph

CNN) point-based 3D deep learning architecture and used in the extraction of the 3D semantic

map. The topological map was produced by using the information produced by the semantic

map. The nodes in the topological map produced by using that information were combined using

the Minimum Spanning Tree (MST) algorithm, thus it was provided to prepare a route plan that

the robot could navigate autonomously. The Dijkstra algorithm was used to determine the

optimum path plan. The victims were identified with YOLO.

vi

With the 3D semantic map produced in the project, detailed information about the

environment was obtained before the search and rescue teams started their work. In this way,

vital risks can be reduced. In addition, it may be possible to export the resulting software abroad

as a product with high added value.

Keywords: search and rescue robots, 3D semantic mapping, 3D metric mapping,

topological mapping, victim detection, point cloud data.

vii

ACKNOWLEDGEMENT

We would like to thank our supervisor, Asst. Prof Burak Kaleci for his support and

guidance in the project with his knowledge and experience. We are grateful to Research

Assistant Muhammed Oğuz Taş and Research Assistant Kaya Turgut for their support,

guidance, and contribution to the project.

This project is supported by the Scientific and Technological Research Council of

Turkey (TÜBİTAK) 2209-B Industrial Oriented License Graduate Thesis Support Program,

Grant No: 1139B412000223

viii

TABLE OF CONTENTS

ÖZET ..iii

ABSTRACT ... v

ACKNOWLEDGEMENT... vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. x

LIST OF TABLES ... xi

LIST OF SYMBOLS AND ABBREVIATIONS ... xii

1. INTRODUCTION... 1

1.1. Objectives ... 1

1.1. Novelty ... 1

2. REQUIREMENTS SPECIFICATION... 2

3. PROPOSED METHODS .. 4

3.1. Creating Metric Map ... 4

3.2. Creating Semantic Map ... 7

3.3. Creating Topological Map .. 11

3.4. Preparing the Path Plan ... 14

3.5. Human Detection in the Map .. 14

4. EXPERIMENTAL RESULTS... 15

4.1. Experimental Setup ... 15

4.2. Metric Map Results ... 17

4.2.1. Metric Map by Using RTAB-Map ... 17

4.2.2. Metric Map by Using Our Own Mapping Method .. 18

4.3. Semantic Map Results ... 19

4.4. Topological Map Results .. 20

4.5. Navigation Results .. 23

4.6. Victim Detection ... 24

5. Tools, Hardwares and Softwares ... 25

6. Project Management .. 25

6.1. Gannt Chart .. 26

ix

7. CONCLUSIONS ... 27

8. REFERENCES ... 27

x

LIST OF FIGURES

Figure 1. Metric map ... 5

Figure 2. Semantic classification result [10].. 9

Figure 3. Semantic map ... 9

Figure 4. Clustering planes ... 10

Figure 5. Segmenting planes .. 10

Figure 6. Bounding box ... 11

Figure 7. Topological map nodes .. 11

Figure 8. Wall edge intersection problem .. 13

Figure 9. Connection of two nodes .. 13

Figure 10. Wall plane .. 13

Figure 11. Gazebo environment with a victim .. 15

Figure 12. Real test environment. (a) Gazebo test environment. (b) 16

Figure 13. Esogu electrical and electronics engineering laboratory building gazebo model 16

Figure 14. 3D metric map, step 120 and 160 ... 17

Figure 15. Metric map with occupied cells. (a) Metric map with occupied and free cells. (b)18

Figure 16. Metric map creation process .. 19

Figure 17. Semantic map of the environment ... 20

Figure 18. Node generation steps .. 21

Figure 19. Topological map of the environment ... 22

Figure 20. Navigation process ... 24

Figure 21. Victim detection with yolo .. 24

Figure 22. Gannt chart .. 27

xi

LIST OF TABLES

Table 1. Work packages .. 25

xii

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Explanation

NIST: The National Institute of Standards and Technology.

AFAD: Afet ve Acil Durum Yönetimi Başkanlığı.

DGCNN: Dynamic Graph CNN

PCL: Point Cloud Library

RANSAC: Random Sample at Consensus

RTAB-Map: Real-Time Appearance-Based Mapping

YOLO: You Only Look Once

DARPA: Defense Advanced Research Projects Agency

MST: Minimum Spanning Tree

1

1. INTRODUCTION

1.1. Objectives

Within the scope of this project, it is aimed to create a 3D semantic map that search

and rescue teams can benefit from. Creating 3D map is one of the subjects which increased

its popularity in the field of robotics with the development of 3D perception technologies.

Especially in recent years, in RoboCup competitions, 3D map quality has started to be

evaluated as a success criterion. Semantic map and metric map are the ways of representing

environments as 3D. For both metric and semantic maps, the point cloud data of the

environment is required. There are many mapping packages available in ROS to obtain point

cloud data of the environment. RTAB-Map and OctoMap are among the packages that are

used for this purpose. In the scope of this project, we aim to provide our own mapping

method to gather point clouds of the environment. Eventually, metric and semantic maps

will be created with the help of the point cloud data. A metric map is obtained by representing

a table, chair, wall, etc. which exists in the environment with voxels. In this project, it is

planned to create a metric map with a predetermined size and resolution. Also, a point-based

3D semantic map will be created to derive the planes that are ramps, walls, and terrains. It

is also aimed to create a topological map from a semantic map. After the topological map is

created, its nodes will be used to navigate in the environment. In order to detect the victims

in the environment, the YOLO algorithm will be used.

1.1. Novelty

With the project is successfully completed, the targeted product will be a software

capable of 3D mapping in indoor environments after the disaster. This software is well suited

for these environments as it will be fed with point clouds. Software that successfully 3D

mapping using object recognition and image data are available in previous studies. However,

the success of these studies directly depends on the quality of lighting. There will probably

be no electricity in the indoor environments after the disaster. In this case, problems in the

lighting of these environments will cause the software running using existing image data to

fail. Two main problems are still waiting to be solved in software that creates exploration

2

and 3D semantic maps using point cloud data. The first problem is that the computational

cost increases due to the large number of points in the point cloud. In previous studies, it has

been tried to create a 3D occupancy grid by keeping the point cloud data in data structures

such as an 8-tree structure (octree). However, this technique may not be efficient. In order

to increase the efficiency, we have created a 3D array in which we stored the voxels with

their centers. The sizes of the array and the resolution of the voxels were predetermined.

Initially, all the voxels were assumed to be unknown. As the robot moved, the voxels were

labelled as free or occupied. With this method, we accelerated the creation of the metric map.

Deep learning architectures, which have been very popular in recent years, are used

to determine the semantic class of each point on the map. Thus, semantic classification is

made on point basis with high accuracy. Moreover, we obtained the topological map with

the help of the ramps, walls, and terrain information of the semantic map.

2. REQUIREMENTS SPECIFICATION

Significant technological developments in the fields of software and hardware in

recent years have increased the studies for the widespread use of robots in many areas. One

of these areas is mapping of indoor environments after disasters such as floods, fires, toxic

substances spread and earthquakes. Organizations such as RoboCup and DARPA, organize

competitions in order to measure whether robots have the necessary hardware and software

capabilities to perform this task. RoboCup organization has organized various competitions

regarding search and rescue tasks every year since the early 2000s and evaluated the teams

participating in the competition according to certain standards and criterias. Kitano and

Tadokoro [1], in their study conducted in 2001, evaluated the difficulties that robots may

encounter in search and rescue tasks, current technologies and developments that need to be

made. In the light of these evaluations, new and more demanding standards and criteria are

determined every year, so the capabilities of robots have been improved. In the evaluation

made by Sheh et al. [2] in 2016, the improvements made by robots have been revealed thanks

to the RoboCup competitions. The competitions held in 2016 and later have focused on

mapping. In the previous studies, methods that successfully perform the 3D mapping task

using image data has been proposed [3,4]. However, image data is not suitable for post-

disaster search and rescue environments where lighting conditions are bad, dusty and low

3

visibility. Therefore, teams participating in RoboCup competitions generally prefer to use

sensors that can generate point clouds such as 2D and 3D laser, LiDAR and RGB-D cameras.

For example, Yıldız robot, which was developed by Yıldız Technical University's Yıldız

team and earned them first place in the search and rescue class in the RoboCup competition

in 2016, has a UTM-30LX laser and a Kinect RGB-D camera [5]. In the past years, teams

participating in RoboCup competitions have benefited from various mapping methods using

the mentioned sensors for 3D mapping. For example, in the RoboCup organization held in

2018, the Cambridge University team is used the gmapping method, while the Yıldız Team

is used the R-SLAM (Simultaneous Positioning and Mapping) method. Besides all these,

there are frequently used methods such as hector_mapping [6], OctoMap [7] and real-time

appearance-based mapping (RTAB-Map) [8] [9].

Within the scope of this project, it is aimed to perform 3D semantic mapping by using

the Asus Xtion Pro RGB-D camera located on the robot. This map will be created for search

and rescue teams to have detailed information about the environment before they start their

activities. Unlike previous studies, objects such as ceilings, floors, walls, flat and inclined

ramps and victims will be included in the 3D map to be created within the scope of this

project. In order to achieve this, firstly, the basic information obtained through the robot's

sensors will be transferred to a global metric map (3D occupancy grid) by using the RTAB-

Map method. 3D occupancy grid will also be created using 3D array. In 3D array, the empty,

occupied and free cells will be stored. In order for the robot to create the semantic map, it

is required to semantically classify the points as wall, floor, inclined and flat ramp in the

point cloud data obtained with the RGB-D camera. To achieve this, it would be a suitable

solution to use point-based deep learning architectures. In their study, Turgut and Kaleci

[10] implemented the PointNet, PointNet ++, DGCNN, and PointCNN architectures in order

to determine the semantic classes of wall, floor, inclined and flat ramp objects in search and

rescue areas. And they discussed the positive and negative aspects of these architectures. It

was decided to use the DGCNN method by making use of this study. It is aimed to create a

path plan in order to reach the determined goal or goals. Topological map will be used to

create this path plan and shortest path finding methods will be used. In cases where there is

only one target, Dijkstra's [11] method will be used to create the path plan. After the path

plan is created, the robot will perform the navigation task to reach the given destination. In

order to be successful in this task, appropriate linear and angular velocities should be

4

determined in the environment where there are ramps. The robot will continuously update

its 3D metric. Finally, the robot must detect the victims in the environment and show their

locations accurately. Previous studies include architectures that have been successful in

identifying people, such as YOLO [12], SSD, RCNN and Faster RCNN. Among these

methods, it is decided to use the YOLO method, by considering the detection speed and

detection distance criteria.

3. PROPOSED METHODS

In this section, creating metric, semantic and topological maps’ steps will be detailly

explained. Besides, the path planning and victim detection steps will be mentioned.

3.1. Creating Metric Map

Robots generally need an accurate representation of the environment in order to

perform the tasks assigned to them. Metric and topological mapping methods have been used

frequently for this representation in previous studies . Metric maps are usually represented

by grids in 2D space those divide the environment into equal-sized cells. Although metric

maps can be created easily, it requires high processing power when the number of cells are

increased. On the other hand, since topological maps are expressed with nodes and edges

connecting the nodes, they reduce the required processing power and work more efficiently

in real-time applications. The main disadvantage of topological maps compared to metric

maps is that they are more difficult to create [18].

An example metric map is shown in Figure 1. In the figure, gray, green, and red

colors show unknown, empty, and occupied voxels, respectively.

5

Figure 1. Metric map

Within the scope of this project, the metric map of the indoor environment in the

search and rescue environment has been created with a 3D occupancy grid. In order to create

the 3D metric map, RGB-D camera has been used in the Gazebo simulation environment.

Common mapping methods such as OctoMap and RTAB-Map are suitable to create the

metric map. Silva et al. [9] discussed the positive and negative aspects of OctoMap and

RTAB-Map methods which are used for post-disaster search and rescue tasks in their study.

The authors stated that the installation of RTAB-Map and it’s use in ROS offers a more user-

friendly experience, contrary to RTAB-Map, more intense procedure should be used for

most operations to be performed in OctoMap. In addition, while 3D object classification can

be done with RTAB-Map method and objects whose classes are determined can be

transferred to the map, OctoMap method does not have such a capability. For these reasons,

it was preferred to use the RTAB-Map method in this study.

Initially, we used RTAB-Map in order to obtain the metric map [17]. In the study,

the point cloud data is converted into voxels using octree data structure. In the creation of

the metric map, the semantic map is used as well. From the walls, terrain, inclined and

straight ramps, the voxels are labelled as red, yellow, blue, and pink respectively. RTAB-

Map was very useful for creating metric map because the point cloud data represents free

cells of the environment was already available in the package itself. The point clouds

respresent the occupied spaces in the environment were also obtained by using RTAB-Map

at the first stage of our study. The robot was moved in the environment with teleoperation

method and 160 Point Cloud Data (PCD) has been gathered. Each of these point cloud data

6

processed seperately and created an metric map with these seperate point cloud datas. In

order to create metric map, octree structure available in PCL libraries has been utilized. With

the help of the RTAB-Map and PCL, the free and occupied voxels has been generated. We

also represent occupied cells with blue, pink, red and yellow in order to show the inclined

ramps, straight ramps, walls and terrain in the environment, respectively. Which of the cells

belong to which of the class were determined by using semantic map which means that

semantic map was used in the stage of creating metric map.

After the metric map with the data obtained from RTAB-Map has been created, we

have made our own mappig by which we also created a metric map. As it is stated, the point

cloud data which represent free and occupied spaces in the environment was already

available in RTAB-Map. However, our own mapping method provides us only the point

clouds that represent occupied spaces in the environent. For this reason, we also determined

the free cells in the environment with our own algorithm. We tested the algorithm with large

environment as well. Without depending the environemnt size, the speed for determining

the free and occupied voxels was the same.

In the algorithm, we first determined resolution and sizes of the environment and

created a 3D array where the center information about metric map was stored. If the voxel

is free, its value is 1, if the voxel is occupied, its value is 0 and lastly, if the voxel is unknown,

its value is 0.5. Initially, all voxels in the environment were assumed to be 0.5 which means

unknown. As the robot moved around, the voxels are labelled as free or occupied. According

to algorithm we designed, constructing a metric map consists of 2 stages. The first stage is

to find the occupied voxels and the second stage is to find free voxels. In the first stage, the

process is simple. The point cloud data obtained from our own mapping method is used. The

points are avaiable with their location information in point cloud vector and must be

determined which of the points belong to which of the voxel. A voxel may contain many

points and most probably it will since the resolution we determined for metric map is 0.1 m.

In order to determine the voxel they belong to a simple process is applied. The global

location of the points are divided by the resolution of the metric map and converted to

integer. If the point is located in position x = 1.2, y = 3.1, and z = 0.8, this would mean that

the point belong to voxel with indexes 12, 31, and 8. The problem here is that, there may be

more than 1 point in one voxel. As a result of that, the same voxel may be needed to be

7

accessed many times in vain. To overceome this problem the voxels’ locations are first stored

in standard template library set. After all the point are checked, the 3D array is updated. In

the next step only the unknowns are taken into account. In this way, the repeated processes

are prevented. In the second stage of the algorithm, the free voxels are determined and the

array is updated one more time. The process of finding the free voxels a little bit more

complicated than finding occupied voxels. First, the odometry information of the robot is

required. The camera pose is obtained from odometry info. To do this, the transformation

must be applied between odometry and camera. This process is repeated at each step. After

the camera pose is obtained, the voxels in free space are found. Secondly, the artificial lines

are created between the robot’s pose and the obstacles. The points on the line are advanced

step by step. The voxels that the points belong to are found. Lastly, the array is updated as

free up to the point where occupied voxel is found.

3.2. Creating Semantic Map

Within the scope of this project, semantic map was created mainly to provide detailed

information for search and rescue teams in indoor environments after disasters. In addition,

it was planned to assign semantic classes to the nodes of the topological map and to use the

semantic map during navigation. Thus, this information can be used while planning the path.

Point cloud data obtained by the robot‘s RGB-D camera was used to create a semantic map

of the environment. Point-based deep learning architectures was used to decide whether each

point in this point data belongs to the floor, wall, inclined or straight ramp classes. In their

study, Turgut and Kaleci [10] collected point cloud data from the Gazebo environment given

in Figure 2 and created a dataset called ESOGU RAMPS, which contains points belonging

to floor, wall, inclined or flat ramp classes. Later, PointNet, PointNet ++, DGCNN, and

PointCNN point-based deep learning architectures were employed to train the dataset.

PointNet architecture evaluates points independently and individually. Local features are

extracted for points using multilayer networks. Then, these local features are summarized

with the maximum pooling method and global features are obtained. Finally, semantic class

is decided by combining global and local features. PointNet ++ architecture uses local area

to extract the properties of points. This local area is always created according to the x, y and

z coordinates of the point and the local features of a point are decided by using all points in

this region. This local area is expanding in each layer. DGCNN architecture also extracts the

8

properties of the point by using local regions like PointNet ++. However, in this architecture,

local regions are created with K neighbors for each point. Also, the feature space is

considered to decide on these K neighbors after the first layer. Unlike other architectures,

PointCNN architecture evaluates points together with their neighbors, not individually, in

the feature extraction phase. The results obtained with these architectures are given in Figure

2. In the figure, red, yellow, blue and pink show walls, floors, sloped and straight ramps,

respectively. White ellipses are used to draw attention to the points that are classified

incorrectly. When Turgut and Kaleci [10] evaluated the numerical and visual results

together, they concluded that the DGCNN architecture outperformed other architectures.

It was decided to use DGCNN architecture within the scope of this project. Using the

model trained for this architecture, the semantic class of each point in the point cloud data

that the robot instantly receives will be decided. Then these points were added to the

semantic map.

 G
ro

u
n

d
 T

ru
th

P
o
in

tN
et

D
G

C
N

N

9

P
o
in

tN
et

+
+

P
o
in

tC
N

N

Figure 2. Semantic classification result [10]

Within the scope of this project, semantic map was created mainly to provide detailed

information for search and rescue teams in indoor environments after disasters [17]. Firstly,

point cloud data was obtained by the robot’s RGB-D camera that was used to create a

semantic map of the environment. Point-based deep learning architectures was used to

decide whether each point in this point data belongs to the floor, wall, inclined or straight

ramp classes. There are several kind of point-based deep learning approaches, in this scope

of this project DGCNN architecture that is more suitable for search and rescuae areas are

used. Using the model trained for this architecture, the semantic class of each point in the

point cloud data that the robot instantly receives will be decided. Then these points were

added to the semantic map and the map will grow step by step. In Figure 3, two adjacent

scenes were merged and they were given different colors.

Figure 3. Semantic map

10

In the semantic map, after using DGCNN architecture, different classes were

obtained. They were also labeled by giving different colors. Walls, terrains, inclined ramps

and straight ramps are assigned to red, yellow, blue and pink, respectively. Figure 4

illustrates that process.

Figure 4. Clustering planes

In addition assigned semantic classes are used for generating the nodes of the

topological map and to use the semantic map during navigation. Thus, this information can

be used while planning the path. In order to achive this process each plane should be

determined. In this way terrain will be used to generate the nodes on it also each wall plane

helps to determine edge of the minimum spanning tree algorithm. In this way path can be

generated to navigate on the map properly. In order to achive this process RANSAC

(Random Sample at Consensus) algorithm is used to segment each planes. RANSAC extracts

the mathematical equations from planes. However, different planes can be modeled as same

mathematical equation. Take into account this problem, Region Growing method is used to

separate this planes. Figure 5 depicts that segmented planes with RANSAC.

Figure 5. Segmenting planes

11

Storing each segment in the memory is an issue that consumes more memory. In

order reduce to memory usage, bounding boxes are stored in the memory. In this way, same

process can be performed with less memory usage. Figure 6 illustrates that incremental

growing of the map with bounding boxes.

Figure 6. Bounding box

3.3. Creating Topological Map

Topological map is a mapping method, that represent the environment with nodes

where they place at critical regions and the edges connecting these nodes. Nodes in the

topological maps are created to derive a path plan of the environment. By generating nodes

in required locations and connecting them by considering the lowest edge weights, efficient

path plans can be generated from topological maps. Thus, the required amount of memory

is significantly decreasing with the use of more suitable structures for creation of topological

map [18]. An example topological map is shown in Figure 7.

Figure 7. Topological map nodes

12

In this study, different from the studies in the literature, the information produced by

the semantic map was used to generate the topological map. In this project, by obtaining the

semantic map, we derived the bounding boxes of wall, ramp, and terrain segments in each

data. Then, the nodes are created considering the type of the planes. Nodes are located on

the middle of the straight ramps and terrains. In contrast of the straight ramps and terrain,

nodes are located on the bottom points of inclined ramps. In this way, sliding is prevented

when the robot stops on the node for generating a new path plan. During the generation of a

new node on the terrain segments, euclidean distances between previously generated nodes

are calculated. In this way, as minimum as possible number of nodes are generated. At the

same time with generating nodes, we also created the environment by combining and

visualizing the bounding boxes by using Point Cloud Library (PCL).

After obtaining the nodes, we pass to the stage of connecting the nodes in the

topological map. In order to navigate the environment autonomously, a path plan must be

generated. However, considering the locations of the nodes in the environment, it is clear

that it is not possible to create a path plan by directly connecting the nodes.

We used the minimum spanning tree method to connect the nodes. The minimum

spanning tree is a subset of the interconnected edges that are connecting all the nodes in the

environment with the minimum edge weight. In this method, an adjacency matrix is created,

then the closest nodes in this matrix are connected and the connection having the lowest cost

from the starting node to the target node is created. There is an issue of connecting the nodes

that an edge may be intersect with a wall as shown in Figure 8.

In order to obtain collision-free minimum spanning tree, all edges must be checked

with the process mentioned above. If an edge does not intersect any wall in the known

environment, the nodes are connected. Otherwise, the weight between these nodes is updated

with a huge number and the process of generating minimum spanning tree is repeated until

we obtain collision-free minimum spanning tree.

13

Figure 8. Wall edge intersection problem

In order to solve this problem, firstly, parametric equation of the line which is

between the nodes illustrated in Figure 9 is calculated using following equations.

Figure 9. Connection of two nodes

𝑥 = 𝑥0 + (𝑥1 − 𝑥0)𝑡 (1)

𝑦 = 𝑦0 + (𝑦1 − 𝑦0)𝑡 (2)

𝑧 = 𝑧0 + (𝑧1 − 𝑧0)𝑡 (3)

After that, plane equation is obtained using RANSAC (Random Sample at

Consensus) from the wall plane is illustrated in Figure 10.

Figure 10. Wall plane

14

The related plane equation of the wall in Figure 10 is given in equation 4.

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (4)

Finally, intersection coordinates are obtained by following equations.

𝑥𝑐 = 𝑥𝑠 −
A(𝐴𝑥𝑠 + B𝑦𝑠 + C𝑧𝑠 + D)

𝐴2 + 𝐵2 + 𝐶2

(5)

𝑦𝑐 = 𝑦𝑠 −
B(𝐴𝑥𝑠 + B𝑦𝑠 + C𝑧𝑠 + D)

𝐴2 + 𝐵2 + 𝐶2

(6)

𝑧𝑐 = 𝑧𝑠 −
C(𝐴𝑥𝑠 + B𝑦𝑠 + C𝑧𝑠 + D)

𝐴2 + 𝐵2 + 𝐶2

(7)

3.4. Preparing the Path Plan

After we build the topological map, we consider the shortest path problem to generate

the robot's path plan. At this stage, Dijkstra's algorithm, which is one of the most common

algorithms used in the solution of the shortest path problem, is used in this study to create

the lowest cost path plan. Dijkstra's algorithm is using the topological map to calculate the

path plan. First, the robot finds the closest node to itself in the topological map. This node

can be called the starting node. Similarly, the closest node to the target is decided. The cost

of movement of the robot from the starting node to each node connected to this node is

calculated and the lowest cost node is marked. After the first marked node, the cost will be

calculated similarly, the following nodes are marked so the lowest cost path plan is created.

3.5. Human Detection in the Map

Identifying the location of victims in disaster environments is very important for

search and rescue activities in order to save victim’s life. It may be appropriate to utilize

deep learning architectures to accurately and quickly identify the victim in complex

15

environments such as disaster environments. In this context, it was used the third version of

YOLO (You Only Look Once) architecture, which detects objects by passing the image

through an artificial neural network at a time. Compared to the existing object detection

algorithms in previous studies, YOLO can detect objects quickly as well as successfully, and

can recognize objects of different scales and sizes. When the victim has been identified with

YOLO, the location of the victim in the environment was also determined. The Figure 11

illustrates the environment with a victim.

Figure 11. Gazebo environment with a victim

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

Before testing the methods developed within the scope of the project using real

robots, observing how these methods work in simulation environments such as GAZEBO

[13] and whether they produce the desired results are frequently used in the field of robotics.

For this purpose, a 6x4 meter environment, similar to the one used in RoboCup competitions

(Figure 12(a)), containing objects such as straight ramps, inclined ramps, and wall planes,

which are determined by NIST, was created to be used in real robot tests of the project. The

same environment was created in the Gazebo simulation environment using the

hector_nist_arenas_gazebo [14] package that is shown in Figure 12(b). In addition, the first

floor of the 52x15 meter ESOGU Electrical and Electronics Engineering Laboratory building

was modeled in the GAZEBO environment. (Figure 13).

16

(a) (b)

Figure 12. Real test environment. (a) Gazebo test environment. (b)

Figure 13. Esogu electrical and electronics engineering laboratory building gazebo model

A Pioneer 3-AT mobile robot [15] with Asus Xtion Pro RGB-D camera was launched

in Gazebo simulation environment. The Robot Operating System (ROS) [16] was used to

receive data from the sensors on the robot and to send data to the robot's motors. At this

stage of the project, color visual perception and depth information were obtained with the

RGB-D camera.

17

4.2. Metric Map Results

In the scope of the project, metric map was created by using RTAB-Map at first.

Then, the metric map was created with out own mapping method.

4.2.1. Metric Map by Using RTAB-Map

The results obtained are shown in Figure 14 [17]. These are the results of the study

conducted by Kocaoglu et al. In the study, the metric map is created for 160 sequential steps.

The inclined ramps, straight ramp, walls, and terrain are colored blue, pink, red, and yellow,

respectively. The information of each plane is obtained from semantic map.

In Figure 14(a), the step 40, in Figure 14(b), the step 80, in Figure 14(c), step 120,

and lastly in Figure 14(d), step 160 are illustrated. Here, the results are obtained by using

RTAB-Map. The free voxels are not shown since it hides the ramps, and terrains.

(a) Metric map step 40 (b) Metric map step 120

(c) Metric map step 80 (d) Metric map step 160

Figure 14. 3D metric map, step 120 and 160

18

4.2.2. Metric Map by Using Our Own Mapping Method

In Figure 15(a) only occupied voxels are shown since free voxels hides the occupied

voxels that correspond to the ramps and walls . However, the shape of the ramp is not so

clear due to resolution we determined. As the resolution increases, the ramp becomes more

visible. The metric map obtained from that scene is shown in Figure 15(b).

(a) (b)

Figure 15. Metric map with occupied cells. (a) Metric map with occupied and free cells. (b)

 In the Figure 16, the step by step creation of metric map is illustrated. The free and

occupied voxels are extracted from predefined array, and then they are visualized by using

Rviz.

19

Figure 16. Metric map creation process

4.3. Semantic Map Results

In order to generate semantic map, DGCNN architecture was utilized after

preprocessing steps. Gathered point cloud data divided into sub blocks as a preprocessing

step for taking into account local features. The blocks are divided into 1 m2 size considering

the xy plane. Point-based deep learning architectures require a fixed number of points in

each block. In experiments, we selected the fixed number as 4096. However, in some blocks,

the number of points are greater or lower than 4096. In order to handle this problem random

downsampling or undersampling was performed. The architecture is fed with the data which

consists of x, y, z and normalized x, y, z coordinates regardless of color information. Finally,

DGCNN point-based deep learning architecture with default parameters for segmentation

was utilized. After each scene is semantically classied the entire semantic map was obtained

as shown in Figure 17.

20

Figure 17. Semantic map of the environment

4.4. Topological Map Results

The members of every single segment existing in the environment are taken into

account separately during the node generation process. While generating the nodes on the

straight ramp, because of its large size, we divided it into two parts and we determined the

midpoints of these parts. After that, we created the nodes at these specified points.

 In the navigation, robot may stop and update the path plan at any node it visits.

Therefore, it is necessary that the ground on which the robot stands should be flat and the

robot should not lose it’s position by sliding. For this reason, nodes are located at the bottom

points of inclined ramps. In this way, the robot can be prevented from sliding due to the

slope of ramps and thus the position of the robot may remain the same.

Besides the generating nodes at the locations where they are most needed, it is also

important to have the minimum number of nodes as possible as to cover the entire

environment. Therefore, we considered the distances between the nodes on inclined ramps

and terrain while generating the nodes. If the nodes are created in a similar manner to the

previous segments, there will be many nodes on terrains that are unnecessary and slow down

the generation of robot path plan. That’s why we considered the specified points for the

nodes of inclined ramps to apply a node generation algorithm by using the distance between

the centers of inclined ramps and terrains.

21

By applying the mentioned methods, we generated nodes of the topological map for

each scene which represents the environment sufficiently and efficiently as seen in the Figure

18.

Figure 18. Node generation steps

For every step that the information is provided by the semantic map, the point cloud

data are processed and the topological map is obtained step by step. The nodes are visualized

with yellow, blue, and pink for the terrain, inclined ramp and straight ramp segments

respectively. In this way, it is seen on which segments the nodes are generated. At the first

22

scene, the robot is seen only the ramps, so two nodes on the inclined ramps are generated.

At the scenes following the first scene, the produced point cloud data are processed and the

remaining parts of the node generation section of topological map is created.

The wall, ramp and terrain segments are visualized by using the bounding boxes that

are provided from the semantic map.

In order to obtain the topological map, after the creation of nodes, we connected the

closest nodes according to the order of creation of the scenes by using the coordinates of the

nodes we produced while generating them. After this stage is completed, it is necessary to

check whether there is a wall between the nodes that are connected.

When the robot navigating autonomously, this intersected edges causes to crash. In

order to take into account this problem, line – plane intersection was calculated and

problematic edges connected to proper nodes.

Mentioned processes in the proposed method section are integrated into minimum

spanning tree algorithm in order to avoid improper edge connection. When the edge will be

created, firstly it is needed to check is intersect with the wall, if it is not intersecting any wall

then connect two nodes. If there is a wall between 2 connected nodes, it is necessary to rerun

the minimum spanning tree function by assigning more weight to the value of those 2 nodes

in the neighborhood matrix.

Figure 19. Topological map of the environment

23

After applying the MST method, the topological map of the environment consisting

of the connected nodes is created as seen in Figure 19. After applying the node generation

and MST algorithms, the topological map of the entire environment is obtained. The

adjacency matrix that is produced in this part is provided to Dijkstra’s shortest path algorithm

to derive the shortest path for the navigation.

4.5. Navigation Results

In the environment where the robot is moving, there are ramps so we need to give

the speed low to provide stable movement of the robot or utilize the semantic map in order

to decrease the speed when the robot is to climb or descend the ramp. At this part, we gave

the robot a low speed that is 0.2 m/s so that we provided the stable movement of the robot.

It is also required to give the robot rotating speed when the destination is not in the same

direction as the robot’s direction. In order to determine how much and to which direction the

robot should move, we first created a line in the direction of the robot which is in the x-

direction. As the robot moved, the line also moved in the direction of the robot. Then we

compared the 2 lines with their angles. The first line is the line we created at the beginning

of the navigation, and the second line was created from the robot’s position to the determined

destination. By doing so we have obtained 2 lines whose angles must be the same in order

to make the robot move in the direction of the destination. Different turning speeds and

turning directions were given to the robot at the required situation by which the robot became

more stable and saved time. For example, if we presume that the robot must turn 90 degrees

to line up with the goal, the robot may turn 90 degrees which is logical or the robot may also

turn 270 degrees to match up the 2 lines which provide the requirement but illogical. At this

point, we gave conditions to make it turn 90 degrees but not 270 degrees. The other condition

given to the robot was the turning speed. We adjusted the turning speed of the robot

according to the angle difference between the 2 lines. If the angle is wider, we set the turning

speed to higher. As the angle difference gets smaller the turning speed was also set to lower

speeds.

An example of robot’s navigation is shown in Figure 20 and. In the figure, the robot

is at location 6 at first, and it is expected to go location 9. The nodes which should be

followed by the robot 6, 7, 8, and finally 9. This path plan is obtained by using Dijkstra.

24

Figure 20. Navigation process

4.6. Victim Detection

In order to detect victim in the disaster area, third version of pre-trained YOLO

architecture is utilized. Results are obtained as depicted in Figure 21.

Figure 21. Victim detection with yolo

25

5. Tools, Hardwares and Softwares

• Python

• C++

• GAZEBO

• UBUNTU

• ROS

• RTAB-Map

• PCL

• Cloud Compare

• Tensorflow

• Pioneer P3-AT Mobile Robot

• ASUS XTION RGB-D Camera

6. Project Management

Table 1. Work packages

N

o
Work Packages

Responsible

Team

Member(s)

Time Intervals

Success Criteria and

Contribution to the Success of

the Project

1

Preparing the

Environment and

the Robot for

Simulation Tests

Muhammed

KOCAOĞLU

Muhammed Ali

UZUN

1 November – 15

November

When the robot is started in

GAZEBO, obtaining point cloud data

from RGB-D camera and position

information from step counter from

the simulation environment will be

deemed successful. Its contribution

to our project will enable the

methods developed before the real

environment tests to be experienced

in the simulation environment.

2
Creating the

Metric Map

Muhammed

KOCAOĞLU

15 November – 1

January

The fact that the map shows the

ramps and walls in their correct

positions and can do this in

environments with dimensions of

6x4 and 52x15 meters will be

considered as success

criteria.When this work package is

26

successful, we will have a map

where we can create the topological

map in our project.

3 Topological Map
Muhammed Ali

UZUN

1 November – 1

January

Expressing the entire environment

with as few nodes as possible will be

considered as a success criterion.

Nodes in the map will be produced.

4
Creating

Semantic Map

Yunus Emre

IŞIKDEMİR

1 January – 15

February

Expressing the entire environment

as a point cloud and determining the

semantic classes of the points in this

point cloud. Its contribution to the

project is to obtain a map that can be

used by search and rescue teams. It

can also be used to create

topological map.

5

Preparing a Path

Plan for the

Determined

Target

Point / Points of

the Robot

Muhammed Ali

UZUN

Yunus Emre

IŞIKDEMİR

15 February – 1

April

Calculation of the shortest path for

the robot to reach the given frontier

or frontiers will be considered as a

success criterion. With this package,

the optimal route plan will be

created.

6

Navigation for

the

Implementation

of the Path Plan.

Muhammed

KOCAOĞLU

15 February – 1

April

The robot's reaching the waypoints

and the frontier without tipping will

be counted as success criteria. This

step will avoid unwanted interruption

of the exploration process in the

project.

7

Human

Detection in the

Map

Muhammed

KOCAOĞLU

Yunus Emre

IŞIKDEMİR

Muhammed Ali

UZUN

1 April – 1 May

The robot's finding all the victims in

the environment will be considered

as success criteria. Its contribution

to the project will require less time for

search and rescue teams to reach

the victims as they know their

location.

6.1. Gannt Chart

The gannt chart is created to plan the process of our studies. It is illustared in Figure

22.

27

Figure 22. Gannt chart

7. CONCLUSIONS

Within the scope of this project, a 3D map of the environment was created in a

simulation environment using the Pioneer 3-AT robot in the indoor environment after the

disaster. The data collected as point clouds from the environment were classified as wall,

floor, straight and inclined ramps, and a semantic map was drawn. Then the metric map was

created as 3D array with predetermined size and resolution. Topological map was obtained

by using segment information produced in semantic map. After that, by applying MST

algoritm to the derived nodes, the connections between nodes were provided. The dijkstra

algoritm was used to provide path planning to the robot. With the path planning derived from

dijksta, the navigation of the robot was realized.

8. REFERENCES

[1] H. Kitano and S. Tadokoro, “A grand challenge for multiagent and intelligent

systems,” AI Mag., vol. 22, pp. 39–52, 2001.

[2] R. Sheh, S. Schwertfeger, and A. Visser, “16 years of robocup rescue,” KI-Künstliche

Intelligenz, vol. 30, no. 3-4, pp. 267–277, 2016.

[3] A.J. Davison, Y.G. Cid, and N. Kita, “Real-time 3D SLAM with wide-angle vision,”

in Proc. IFAC/EURON Symp. Intell. Auton. Vehicles, 2004.

[4] T. Lemaire and S. Lacroix, “Vision-based SLAM: Stereo and monocular

approaches,” Int. J. Computer Vision, vol. 74, no. 3, pp. 343–364, 2006.

[5] S. Yavuz, M. Amasyalı, E. Uslu, F. Çakmak, M. Balcılar, N. Altuntaş, and S.

Marangoz, “RoboCup Rescue 2016 Team Description Paper YILDIZ.”, 2016.

28

[6] S. Kohlbrecher, “hector_mapping.” Internet: http://wiki.ros.org/hector_mapping,

2013. [Nov. 14, 2020].

[7] “wiki.ros-Octomap-Kinetic.” Internet: http://wiki.ros.org/octomap, [Nov. 25, 2020].

[8] “RTABMap.” Internet: http://wiki.ros.org/rtabmap_ros, [Nov. 28, 2020].

[9] T. De Silva, B. Cooray, J. Chinthaka, P. Kumara, S. Sooriyaarachchi, “Comparative

Analysis of Octomap and RTABMap for Multi-robot Disaster Site Mapping.”, 2018.

[10] K. Turgut and B. Kaleci, "Comparison of Deep Learning Techniques for Semantic

Classification of Ramps in Search and Rescue Arenas," 2020 Innovations in

Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, pp. 1-6,

2020.

[11] Y. Denga, Y. Chenb, Y. Zhanga, S. Mahadevanc, S, "Fuzzy Dijkstra algorithm for

shortest path problem under uncertain environment.", 2012.

[12] J. Redmon, A. Farhadi, “YOLO9000: Better, faster, stronger.”, 2017.

[13] “Gazebo.” Internet: http://gazebosim.org/tutorials, [Dec. 12, 2020].

[14] “Hector_nist_arenas_gazebo.” Internet:

http://wiki.ros.org/hector_nist_arenas_gazebo, [Dec. 14, 2020].

[15] “p3at_tutorials.” Internet: https://github.com/Gastd/p3at_tutorial, [Dec. 18, 2020].

[16] “ROS.” Internet: https://www.ros.org/, [Feb. 15, 2021].

[17] M. KOCAOĞLU, Y. E. IŞIKDEMİR, M. A. UZUN, K. TURGUT, M. O. TAS, and

B. KALECİ, “A Mobile Robot Application for Constructing Semantic and Metric

Maps of Search and Rescue Arenas with Point-Based Deep Learning.” Journal of

Scientific, Technology and Engineering Research.”

[18] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation.”,

1998.

http://wiki.ros.org/rtabmap_ros
http://gazebosim.org/tutorials
https://github.com/Gastd/p3at_tutorial

